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Abstract

We use a laboratory experiment to test the dynamic formation of networks in a six-
subject game where link formation requires mutual consent. First, the game tends to
converge to the pairwise-Nash stable (PNS) network when it exists, and to not converge
but remain in the closed cycle when no PNS network exists. When two Pareto-rankable
PNS networks exist, subjects often coordinate on the high-payoff one. Second, the
analysis of single decisions indicates the predominance of myopic rational choices, but
it also highlights interesting systematic deviations, especially when actions are more
easily reversible and when they involve smaller marginal losses. Third, behavior is
heterogeneous across subjects, with varying degrees of sophistication.
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1 Introduction

Networks shape a variety of social and economic interactions and their importance has

been increasingly recognized in economics (Jackson, 2008, 2014). Among economists, a key

question of interest is on how incentives shape networks that are formed by self-interested

agents. Studies of stable forms of cooperation have a deep root in economics, particularly in

the context of decentralized matching (Gale and Shapley, 1962). More recently, theorists

tackle a similar question in the context of network formation, with the introduction of

solution concepts that predict the kind of stable networks that will emerge under different

assumptions about individual behavior.

Two stability notions commonly used in the theoretical literature are Nash stability

(Myerson, 1991) and Pairwise stability (Jackson and Wolinsky, 1996). They formally

describe the networks that emerge under certain interactions by self-interested individuals.

The theoretical literature has also analyzed the network evolution process. For example,

Jackson and Watts (2002) study the dynamics of social and economic networks when the

actions of all subjects are myopic rational, that is, when each link is decided solely based

on its current net benefit without strategically thinking ahead.

Despite significant theoretical advances, there is only a small experimental literature

examining pairwise stability in dynamic linking games with mutual consent (Pantz, 2006;

Kirchsteiger et al., 2016; Teteryatnikova and Tremewan, 2019).1 Empirical evidence can

help researchers understand the relevance of the theoretical notions of stability and the

circumstances conducive to deviations. Since testing stability using observational data is

difficult,2 we build a controlled laboratory experiment with three objectives. First, we

study the likelihood that participants in our network formation game converge to a stable

network as a function of the existence and number of such stable networks, as well as their

characteristics (payoff structures, difficulty to reach them, etc.). Second, since individuals

sometimes deviate from myopic rational choices either as a means to reach some stable

network or simply as an exploration strategy, we analyze the circumstances conducive to

such deviations (opportunity cost, reversibility, etc.). Third, we investigate heterogeneity

in behavior across subjects and how this variability impacts both the individual payoffs

and the final outcomes.

1In contrast, experimental analyses of stability in decentralized matching settings have received more
attention (see, e.g., Chen and Sönmez, 2006; Echenique and Yariv, 2013; Echenique et al., 2016; Agranov
et al., 2020). There is also a recent literature that explores from a theoretical and experimental viewpoint
the stability in the dynamics of vote trading (Casella and Palfrey, 2019, 2020).

2Methodological papers that analyze peer effects in endogenously-formed social networks have assumed
that the observed networks are pairwise stable (see e.g., Boucher and Mourifié (2017) and Sheng (2020)).
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Our experimental game slightly modifies the dynamic linking game developed by Watts

(2001). Each game is played with six subjects. This expands significantly the complexity

of the network formation process relative to the previous literature (as complexity grows

exponentially with the number of players). It introduces a rich game structure, where we

can vary the existence and number of stable networks. It also allows us to avoid networks

such as the empty and full network. Such networks can often become “focal” in the

sense of Schelling (1960) — namely, networks whose salience allow players to coordinate

on by default in the absence of communication. Our study analyzes the data in three

(complementary) ways: network outcomes, single decisions, and choices of individuals.

The analysis of final networks suggests that outcomes can, to some extent, be predicted

by the notion of “Pairwise Nash Stable” networks (PNS, which combines Pairwise stability

and Nash stability). We show that if the game has no PNS network, behavior does not

converge. However, and in accordance to the theoretical prediction, it stays within a

closed cycle in 66% of the games. When a unique PNS network exists, we find some

evidence of convergence to it (31% and 47% of the games depending on the treatment) and

little evidence of convergence elsewhere. We argue that the observed differences in PNS

convergence across treatments may be linked to the characteristics of the PNS network

and, in particular, symmetry/asymmetry of payoffs across subjects. Finally, with multiple

PNS networks, the process reaches the Pareto-Superior PNS network in 44% of the games

while it never stays in the Pareto-Inferior PNS.

Our study of single decisions empirically qualifies a key behavioral assumption of Jack-

son and Watts (2002)’s theory of social network evolution. Their predictions rely on having

agents that (almost) always make myopic rational choices. Although a large fraction of

decisions in our experiment are myopic rational (74% to 91% depending on the treatment),

we also find evidence of systematic deviations. We therefore develop an empirical strategy

to test for correlates of deviations from myopic rationality.

We find four intuitive situations that affect the probability of deviations. First, devia-

tions are more common in early turns. This is natural because, in our design, subjects are

guaranteed 12 turns before they enter a probabilistic match-ending phase. Second, devia-

tions are more frequent when they imply keeping an excessive number of links, presumably

because future link removals do not require mutual consent. These two deviations suggest

that subjects are more likely to “experiment” with decisions that are not myopic rational

if they feel that such actions can be more easily reversed later on. Third, subjects deviate

more often when the marginal payoff losses are small. This is consistent with a theory of

“imperfect choice”, where mistakes are inversely related to their cost. Fourth, deviations

are also more frequent in the treatment with multiple PNS, where non-myopic rational
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choices are necessary in order to escape the low payoff stable network. This final deviation

provides some evidence of farsightedness, that is, the ability to think beyond the current

cost and benefit of actions.

A cluster analysis performed at the subject level reveals substantial heterogeneity in

behavior across individuals. We find about 48% of subjects who, while understanding the

strategic nature of the game, are highly myopic rational. Two clusters, comprising 44%

of subjects, exhibit more strategic behaviors by adjusting their actions in different stages

of the game. These more strategic subjects are more willing to experiment by deviating

from myopic rationality in early turns. Finally, the remaining 8% of subjects significantly

deviate from myopic rationality in all stages of the game — a behavior that is difficult to

rationalize as an optimizing strategy of this game.

Our paper contributes to the growing number of experimental studies on network for-

mation.3 The bulk of the literature focuses on examining stability in the unilateral link

formation framework of Bala and Goyal (2000) or the bilateral link announcements game

of Myerson (1991).4 Closer to our setting is the experimental literature on dynamic linking

games with mutual consent. Pantz (2006) and Kirchsteiger et al. (2016) examine outcome

selection given multiple PNS networks. Of these, Kirchsteiger et al. (2016) also implement

the dynamic linking model of Watts (2001) in a smaller, four-person network. The authors

find that subjects deviate from myopic rationality to reach the Pareto superior payoff, but

only when reaching that network requires a limited degree of farsightedness. Our focus is

different in that we design our experiment to systematically study myopic rationality as a

function of the existence and number of equilibria. We are also interested in determining

the circumstances conducive to deviations (turn, action type and marginal payoff) in a

more complex setting. There is also a literature that studies interesting variants of the

bilateral linking game. In Teteryatnikova and Tremewan (2019), payoffs are received at

each turn. In Comola and Fafchamps (2018), payoffs are pair-specific. In Caldara and

McBride (2015), subjects have limited observation of the network structure. In Candelo

et al. (2014), networks face threats of disruption. Finally, in Neligh (2020), the timing of

entry affects the individual payoffs.

The paper is organized as follows. In Section 2, we present the conceptual framework

and the theoretical literature pertinent to our experiment. Section 3 describes the exper-

imental design and introduces our treatments. Then, in the following three sections, we

3There is also a related experimental literature on equilibrium selection in network games (see e.g. Fatas
et al., 2010; Charness et al., 2014).

4See e.g., Callander and Plott (2005), Berninghaus et al. (2006), Berninghaus et al. (2007), Falk and
Kosfeld (2012) and Goeree et al. (2009) for the first line of investigation and Conte et al. (2015), Di Cagno
and Sciubba (2008) and Burger and Buskens (2009) for the second one.
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present our analysis at the final network level (Section 4), single decision level (Section 5)

and subject level (Section 6). Section 7 concludes.

2 Network environment and basic definitions

A network is a collection of links that connect a set of agents. A link between two agents

forms if and only if both decide that it is worth forming. Each link is costly for both

agents and this cost is non-transferable. Meanwhile, the benefit depends on and is a

strictly increasing function of the size of the network component that an agent belongs

to. We distinguish between a network and a component. A network describes the link

configuration that includes the full graph (all agents) while a component is a sub-graph in

which there exists a path linking any two agents. In our setup, all agents in a component

receive the same benefit. Payoffs are computed as the difference between benefits and

costs. A number of theoretical approaches analyze endogenous network formation among

rational, self-interested agents when link formation requires mutual consent (Bloch and

Jackson, 2006). We provide an informal and brief summary of the concepts most relevant

for our experiment.

Myerson (1991) explicitly considers a linking game and uses Nash equilibrium to define

the stability of a network. In his game, agent i’s strategy set is an n-tuple of binary

variables indicating his willingness to link with each of the other agents in the game. A

link between i and j forms if both agents mutually agree to link. A strategy profile is

a Nash equilibrium of the game if and only if no subject can benefit from a unilateral

deviation from their strategy. A network is Nash stable if it is induced by a (pure strategy)

Nash equilibrium of the linking game.

Nash stability does not allow the coordination of agents to improve their payoffs. Jack-

son and Wolinsky (1996) relaxed this restriction with their notion of pairwise stability.

Pairwise stability allows for pairwise deviations and rules out networks that are “intu-

itively unstable” when formed by strategic actors. A network is Pairwise stable if: (i) all

existing links are weakly preferred by both agents in the link; and (ii) if an agent of a

non-existing link would strictly prefer to be in the link, then the other agent of that link

strictly prefers not to be in it (see Jackson and Wolinsky, 1996, p.48).

Finally, Pairwise Nash stability combines both notions: a network is Pairwise Nash

stable (PNS) if and only if it is both Nash stable and Pairwise stable (Bloch and Jackson,

2006). It is worth noting that Nash stability and Pairwise stability are two related but

distinct concepts. The simplest example to illustrate the distinction is to consider a network

with two agents where linking would increase the payoff of both agents. Here, a network
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of two singletons is Nash stable since a strategy profile where both agents expect the other

not to reciprocate is a Nash equilibrium. However, this network is not Pairwise stable since

both agents strictly prefer to form a link. Bloch and Jackson (2006, Example 1) offers an

elaborate example to show that the sets of Nash stable and Pairwise stable networks may

not intersect and both be non-empty.

In a dynamic linking game where pairs of agents randomly meet and make linking

decisions, Jackson and Watts (2002) show how pairwise stability can help predict the

network outcome. Suppose that each linking action is myopic rational – to wit, it optimizes

the marginal payoff from the link under consideration (and not on the option value of

forming or severing links in the future). Hence, a link forms if both agents are weakly

better-off with it and at least one is strictly better-off. Conversely, an existing link breaks

if at least one agent is strictly better-off without it. If all actions are myopic rational,

then the network evolves following an improving path. Starting from any network, Jackson

and Watts (2002, Lemma 1) show that improving paths lead to either a Pairwise stable

network or, when none exists, a closed cycle. A set of networks forms a closed cycle if

no network in the set lies on an improving path leading to a network that is not in the

set. In the experiment, we will also refer as a benchmark to the networks that arise when

agents maximize the sum of payoffs received by all agents. Following Jackson and Wolinsky

(1996), we call them the Efficient networks.

Notice that there might be multiple Pairwise stable networks, some more attractive

than others. Under multiplicity, agents who follow myopic rational choices will be stuck

in the Pairwise stable network they reach via the improving path. However, if they realize

the long run benefits of myopically suboptimal choices, they may move away from one

Pairwise stable network into a Pareto-Superior Pairwise stable network, where the payoffs

are weakly higher for all agents (and strictly higher for at least one agent).5

Finally, but crucial for our experiment, agents in a component often have different

payoffs (they all obtain the same benefits but they are subject to a different number of

direct links). This poses a different multiplicity problem. Even after reaching a PNS

network, a forward-looking agent may have incentives to make or break links in order to

move away and then go back to the same PNS network but in a different position within

the component (e.g., in the same component but with other agents bearing the largest

number of links). If all agents anticipate this possibility, the process may never stop.

5This approach is different from the notion of pairwise farsightedly stable network developed by Herings
et al. (2009), which explicitly considers the possibility of farsighted improving paths. The experiment by
Kirchsteiger et al. (2016) provides evidence of farsighted network formation in a more compact, four-agent
setting.
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3 Experimental setting and procedures

3.1 The basic configuration

We are interested in environments with a large number of network configurations where

links are costly and mutual pairwise consent is needed to form a link but not to break it.

To this end, we implement a stochastic dynamic linking game that slightly modifies the

procedure proposed by Jackson and Watts (2002). We consider the largest network we could

manage, namely n = 6 subjects. This implies n(n−1)/2 = 15 possible bilateral undirected

links between different subjects, and therefore 2n(n−1)/2 = 32, 768 possible networks. Many

networks differ from each other only by the identity of subjects in the different positions.

We say that two networks have the same network structure if they are identical up to a

permutation of the identity of subjects.

We consider a particular payoff structure. Every subject in a component receives the

same benefit, which is a strictly increasing function of its size, while the cost of links is borne

solely by their owners. This setup matches, for example, the endogenous formation of risk-

sharing networks. In a repeated interaction setting, Bramoullé and Kranton (2007) shows

that an arrangement where individuals commit to share monetary holdings equally with

linked partners amounts to equal sharing within network components. Another example

would be the case of club goods offered by religious or social groups without centralized

coordination (see e.g. Berman, 2000) where all members benefit from having an additional

recruit, but participation requires individuals to maintain costly direct links.

This design choice serves two objectives. First, we want to maintain tractability given

the large number of possible networks. This payoff structure limits the set of stable and

efficient networks to be a subset of networks where all components are minimally connected.

We say that a component is non-minimally connected if there exists at least one (redundant)

link that can be removed without affecting the size of the component. Conversely, a

component is minimally connected if there does not exist any such redundant link. When

the benefit is only a function of the component size, removing a link that does not reduce

the component size is always Pareto improving. With 6 subjects, there are 20 network

structures where all components are minimally connected. Second, we also want to simplify

the game enough to minimize the likelihood of participants’ computing mistakes. As such,

the allocation of benefits deviates from the usual connections model where links have

indirect benefits that decay with distance at a rate δ (Jackson and Wolinsky, 1996). We

further simplify the structure by maintaining a constant unit cost of a direct link both

within and across treatments.
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3.2 Experimental design

Each match consists of multiple turns and starts with an empty network. At each turn, the

computer randomly pairs the six subjects. Subjects then choose their actions with respect

to their partner in the pair. A new turn begins after all subjects have taken their actions.

If all subjects are satisfied with the network outcome, they can collectively end the game.

We implement a match-ending rule that provides very extensive opportunities for subjects

to converge. At the same time, it allows decisions to be meaningful and the experiment

to be time manageable. Subjects play for 12 turns unless all subjects are satisfied with

the network. Afterwards, each turn is the last one with probability p = 0.2, providing an

additional 1/p = 5 turns on average. With this probabilistic match-end rule, we hope to

mitigate the last-round effects. It also allows for an interesting comparison of behavior

before and after Turn 12. Finally, since each turn is composed of six decisions, one for

each subject, 12 turns provide a fairly large number of individual decisions per match

(17× 6 = 102 on average, unless subjects decide to stop before).

Figure 1 shows the user interface. At each turn, subjects make decisions with respect

to their current partner by clicking on one of the action buttons displayed on the lower left

section of the screen. If a subject (he) is not linked to his partner, he chooses whether to

“Propose” a link or “Pass Turn”. If he is linked, he chooses whether to “Remove” a link

or “Pass Turn”. We impose no time limit for making a choice. Once both partners in a

pair have taken their actions, the result is immediately displayed on the screen. Hence,

when each subject makes his decision, he observes the latest state of the network. Showing

the latest network configuration within a turn allows us to cleanly determine whether each

individual decision reflects a myopic rational behavior or otherwise.6 If a subject is not

only satisfied with the relationship with his partner but also with the overall network, he

can choose “Network OK” instead of choosing “Pass Turn”.7 As mentioned above, the

match immediately ends if all subjects within a turn choose “Network OK”.

There are two reasons why we matched individuals in pairs within each turn instead

of allowing them to simultaneously make decisions with all other participants. First, with

one decision at a time, participants face well-defined, payoff-relevant choice problems at

all times without overwhelming them with information and multi-dimensional trade-offs.

Second, this setting matches Jackson and Watts (2002)’s stochastic dynamic linking pro-

6On the other hand, it could encourage a war of attrition, where subjects wait to see what others do
in a turn before choosing their own action. There is no evidence in our data of individuals systematically
waiting for others to move within a turn.

7Once a subject chooses “Network OK”, he does not need to choose further actions until the network
changes. To avoid mistakes, all of his action buttons become inactive. These buttons are immediately
reactivated following a change in the network.
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cedure (except for the simultaneous choice of all pairs within a turn as discussed above).

It therefore allows us to study the empirical relevance of the concepts developed in that

theory, namely myopic rationality, improving paths and pairwise stability.

Figure 1: User interface for the linking game.

We carefully designed an interface that balances clarity and amount of information.

On the left side of the screen, it displays all the pertinent information: the subject’s role,

the role of the person he is currently matched with, whether the current turn is a potential

terminal turn and, naturally, the current network configuration. On the right side of the

screen, it displays the benefit of the subject as a function of the size of the component he is

in, the cost as a function of his number of direct links, and his net payoff given the current

network configuration. This succinct but comprehensive visual display allows the subject

to compute with reasonable ease not only the net value of adding or removing an existing

link (i.e., the improving path) but also his payoff in any other network configuration.

Finally but crucially, the node representing the subject is always located at the center and

labeled “You”. The nodes representing the other subjects in a match are labeled by their

roles and surround the subject’s node in clockwise order at an equal distance from it. By

always putting the subject’s node at the center, each subject sees a different graphical

representation even though the underlying connections between subjects in a match are

identical. We therefore avoid leading participants towards visually attractive configurations

such as the star or wheel network.
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3.3 Treatments

The experiment consists of four treatments illustrated in Figures 4–7 at the end of the

paper. Treatments vary in the presence and uniqueness of the PNS network and share

a common representation. First, we construct a “supernetwork” that contains the 20

network structures with minimally connected components (labeled {A} to {T}). Network

structures are vertically ordered based on the total number of links, from zero (top row) to

five (bottom row). Network structures with the same number of links are presented in the

same row. Each network is then connected by a directed arc to one or more networks in

the row above and the row below it. The connections represents the network(s) that can

be reached from the original one either by adding one new link (connection to row below)

or severing one existing link (connection to row above). The direction of the arc captures

the improving path. If forming a new link is on the improving path, then the arrow points

to the row below. If severing an existing link is on the improving path, then the arrow

points to the row above. Network structures with one or more non-minimally connected

components are necessarily off the improving paths. They are omitted unless a match ends

in one of them.

Differences across treatments come exclusively from differences in payoffs (benefits of

component size and cost per link). Naturally, the improving path depends on these values.

We construct payoff functions that do not follow a simple functional form. Instead, our

payoffs obey two simple restrictions: the benefits are strictly increasing in component size

and the unit cost of a link is constant. We use this flexibility to devise treatments: (i) with

no PNS network, a unique PNS network, and multiple PNS networks; and (ii) do not have

focal PNS networks (the empty or the full network). For a given network configuration, a

subject can receive either a positive or a negative payoff, which is represented in the figures

by a black and a red dot, respectively.

Table 1 summarizes the payoff structure and outcome predictions of the four treatments,

whose properties are illustrated in Figures 4–7. Treatment N, has no PNS network and a

closed cycle of networks {B,C,D, F,G,H,N} (the blue shaded area). Treatments UA and

US have each a unique PNS network (blue shade). The main difference between the two

treatments lies in the asymmetry (PNS network {L} in Treatment UA) v. symmetry (PNS

network {H} in Treatment US) of payoffs across subjects. We conjecture that asymmetry

is conducive to instability: the individual bearing the highest number of links has incentives

to deviate with the intention of going back to the same network structure but in a more

advantageous position.8 Treatment M has multiple PNS networks. PNS network {A}
8Both {L} in Treatment UA and {H} in Treatment US are strongly stable (robust to coalition devi-
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(blue shade) is stochastically stable in the sense of Jackson and Watts (2002), therefore

most robust to random perturbations to the improving paths. PNS network {K} (yellow

shade) is Pareto Superior, with strictly higher payoff for five players and the same payoff

for the singleton.9 A computation error (which we realized after running the experiment)

led to the inclusion of two other Pairwise stable networks, {I} and {J}, which are not

Nash stable (pink shade). However, we show in Section 4 (Footnote 13) that the impact

of their inclusion on network outcomes is small.

Table 1: Treatment Design

Treatment
Benefit (size of component) Link

Cost
PNS Efficient

1 2 3 4 5 6

N† 0 20 30 39 42 43 15 None {O,P,Q,R, S, T}[6]
UA 0 19 36 42 44 45 15 {L}[3-3] {O,P,Q,R, S, T}[6]
US 0 29 36 41 43 44 15 {H}[2-2-2] {O,P,Q,R, S, T}[6]
M§ 0 10 17 22 38 44 15 {A}[1-1-1-1-1-1] {O,P,Q,R, S, T}[6]

{K}[5-1]

Notes: Numbers in brackets refer to the size of each component. † Networks {B,C,D, F,G,H,N} are in the
closed cycle; § Networks {I} and {J} are Pairwise stable.

The PNS networks can potentially be reached after zero ({A} in Treatment M), one

({H} in Treatment US) or two turns ({K} in Treatment M and {L} in Treatment UA).

Therefore, while 12 turns may not seem an excessively long horizon, it provides adequate

opportunities for participants to reach any PNS network. Naturally, the empirical minimum

will depend on the realization of the random pairing and the behavior of participants

(myopic rationality vs. forward looking).

ations) in the sense of Dutta and Mutuswami (1997) and neither of them is strongly stable in the sense
of Jackson and van den Nouweland (2005). In any case, given the structure of our game with dynamic
pairwise meetings, coalition deviations does not seem the most natural concept to apply.

9Network {K} is also the unique von Neumann-Morgenstern pairwise farsightedly stable (VNMFS)
network (Kirchsteiger et al., 2016, Definition 2). VNMFS are networks (i) from which there is no farsighted
improving path to and from any network in the set; and (ii) to which there exists a farsighted improving
path from any network outside this set. A farsighted improving path is defined as the sequence of networks
that emerge when pairs of agents that decide on the linking decision consider payoffs that they will receive
at an end network. Each network in this sequence differs from its predecessor by one link. A link is formed
if the payoffs at this end network are beneficial to both agents. A link is removed if the payoffs at this end
network are strictly beneficial for at least one agent.
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To facilitate the comparison of final outcomes, in all treatments: (i) subjects always

start in the empty network {A}; and (ii) the efficient networks are all the networks with one

component where all six subjects are connected, that is, {O,P,Q,R, S, T}. The presence

of multiple efficient networks and, in particular, network {T} (the line that comprises all

agents) should give a fair chance for the efficient outcome. Although initial and efficient

networks are not next to each other, the latter can be reached after only two rounds so

that, once again, agents have ample opportunities to reach any desired location in the

supernetwork. Moreover, in the case of Treatment M and given that subjects always start

at {A}, at least three non-myopic rational choices are necessary to reach the improving

path leading to the Pareto Superior PNS network {K} (see Figure 7).

3.4 Implementation

We conducted 8 sessions with 12 subjects in each session at CASSEL with UCLA stu-

dents. With 12 subjects, there were always 2 groups of 6 subjects in each session, playing

2 matches simultaneously. Each subject played each of the four treatments twice. We

shuffled the order of the treatments to neutralize the possible effects from the ordering

within a session.10 The analysis utilizes a total of 128 match observations (32 matches per

treatment) from 96 subjects (12 subjects in 8 sessions).

To introduce anonymity, after each match we reshuffled subjects into new groups and

assigned a new role (1 to 6) to each subject. Sessions lasted between 90 and 120 minutes.

No subject took part in more than one session. Participants interacted exclusively through

computer terminals without knowing the identity of the subjects they played with. Before

the paid matches, instructions were read aloud and two practice matches were played to

familiarize participants with the computer interface and procedure. Participants also had

to complete a quiz to ensure they understood the rules of the experiment.

At the end of each match, subjects obtained a payoff based on the size of the component

they were in (benefit) and the number of direct links (cost). Participants were endowed

with experimental tokens and they could earn or lose tokens. At the end of the session,

the payoffs in tokens accumulated from all experimental games were converted into cash,

at the exchange rate of 4 tokens = $1. Participants received a show-up fee of $5, plus the

amount they accumulated during the paid matches. Payments were made in cash and in

private. Matches lasted between 13 and 36 turns, with an average of 16.8 turns. There was

a significant spread in winnings: including the show-up fee, participants earned between

10Specifically: (i) the orders of the treatments in the first half and the second half of each session were
different; (ii) no two sessions had identical treatment sequences; and (iii) each treatment was implemented
in exactly two (out of eight) sessions for each order in the sequence.
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$11 and $43 with an average of $29. A copy of the instructions is included in Appendix B.

4 Network outcomes

This section reports the results on network outcomes, most notably convergence and sta-

bility of the final configuration. The results of our analysis are based on the final network

outcomes and those conditional on convergence. We employ the operational definition of

convergence suggested by Callander and Plott (2005), as the absence of change in the

network configuration for the last T = 3 turns.11

Before describing the main results, we first study whether our subjects understand

the basic tenets of the game. Table 2 (column 2) shows that subjects consistently avoid

networks with non-minimally connected components. As discussed above, removing a

link that does not change the component size strictly increases the payoffs of both agents

involved, without affecting any other. Subjects understand this principle, as only 5 out of

128 matches end up in a network with a non-minimally connected component.

4.1 Pairwise Nash stability and network convergence

Hypothesis 1 The dynamic link formation process:

(a) remains in the closed cycle when no PNS network exists;

(b) leads to a PNS network when it exists; and

(c) leads either to the stochastically stable PNS or the Pareto superior PNS when mul-

tiple PNS networks exist.

The theory presented in Section 2 states that if agents follow improving paths, the

linking game will lead to either the unique PNS network or, when a PNS network does not

exist, a network in the closed cycle. In the latter case, we should not observe convergence.

When multiple PNS network exist, it is reasonable to think that some groups will follow the

myopic improving path while others will have farsighted agents who engage in transitory

deviations that lead to a Pareto superior stable outcome. With these premises in mind, we

begin with an analysis of the realized network outcomes.

Result 1 Our results show that:

11T = 3 is arbitrary. It corresponds to 6 × 3 = 18 individual decisions, which seems reasonably large.
With a larger T , convergence decreases but the qualitative conclusions are similar (T = 5 is not presented
for brevity but it is available from the authors).
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Table 2: Network Outcomes

Treatment
Not Min.

Conn.
Closed
cycle

PNS Efficient N

(1) (2) (3) (4) (5)

Panel A. All games

N 2 21 3 32
(0.06) (0.66) (0.09)

UA 2 - 10 2 32
(0.06) (0.31) (0.06)

US 0 - 15 0 32
(0) (0.47) (0)

M† 1 - 14 5 32
(0.03) (0.44) (0.16)

Panel B. Conditional on convergence§

N 1 1 2 5
(0.20) (0.20) (0.40)

UA 1 - 4 1 15
(0.07) (0.27) (0.07)

US 0 - 9 0 16
(0) (0.56) (0)

M† 0 - 9 4 15
(0) (0.60) (0.27)

Notes: Share with respect to N in parentheses. †All PNS network in {K}.
§Convergence is defined as maintaining the same network in final 3 turns.

(a) when a PNS network does not exist (Treatment N), most matches end in a network

within the closed cycle;

(b) when a unique PNS network exists (Treatments UA and US), behavior is dispersed

but the most likely outcome is the (unique) PNS;

(c) when multiple PNS networks exist (Treatment M), behavior is also dispersed but the

most likely outcome is the Pareto superior PNS and no group remains in the stochastically

stable PNS; and

(d) no evidence of convergence to the Efficient network exists except in Treatment M.

Table 2 summarized the frequency (and proportion) of the final outcomes by network
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type in each of the treatments.12 The results provide evidence (albeit limited) in favor of

Hypothesis 1. Panel A shows that in the absence of a PNS network (Treatment N), 66%

of matches end in a network within the closed cycle. Using turn-level data, we find that

matches stay within the closed cycle most of the time: in 58% of all turns, subjects chose

to be in a network within the closed cycle. Furthermore, once a turn ended in the closed

cycle, subjects chose to stay in the closed cycle 76% of the time. In treatments with a

unique PNS network (UA and US) and multiple PNS networks (M), subjects end up in a

PNS network a significant (though not overwhelming) amount of time: 31%, 47% and 44%

of matches, respectively. In addition, matches rarely end in an efficient network (except

for 16% of matches in Treatment M) or in any other specific network of the game. Overall,

PNS is an imperfect but valuable predictor of behavior in the network formation game.

Panel B shows that, as predicted by theory, convergence is least frequent in Treatment

N where no PNS exists (5 out of 32 matches) compared to Treatments UA, US and M

where more than half of the matches converge. Indeed, in Treatment N, myopic rational

subjects are expected to move indefinitely within the closed cycle and along the improving

path, which they often do.

While those results provide support for myopic rational behavior, Treatment M also

highlights some interesting evidence of farsightedness that will be further discussed in

section 5. Indeed, 44% of games ended in the Pareto superior PNS while none ended in the

stochastically stable PNS.13 This result is all the more surprising that, in order to escape

the initial PNS, individuals must incur significant deviations from myopic rationality.14 It

is consistent with the findings of Kirchsteiger et al. (2016), which show higher shares of

groups converging to the farsighted (VNMFS) network compared to the myopic Pairwise

stable networks when the VNMFS network is unique.

In Appendix A.2 we provide a complementary analysis based on the shortest (or

geodesic) distance between the observed and predicted networks (efficient, PNS, closed

cycle), both conditional and unconditional on convergence. The conclusions are similar.

The distance between the observed outcome and any of the efficient networks is longer than

the distance between the observed outcome and the networks in the closed cycle (Treat-

ment N), the unique PNS network (Treatment US) or the Pareto superior PNS network

12Figures 4–7 provide a detailed report on number and proportion of final outcomes in each network,
both conditional on no change in final 3 turns (labeled C) and unconditional on convergence (labeled U).

13Also, only 9% ended in one of the other two Pairwise stable networks that are not Nash stable and
none converged to any of these networks.

14Formally, Jackson and Watts (2002) define the resistance between two networks as the minimum number
of mutations (i.e., deviations from an improving path) necessary to evolve from one network to the other.
In Treatment M, the resistance between the (starting) PNS network {A} and the Pareto superior PNS
network {K} is four.
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(Treatment M). That result, however, does not hold for Treatment UA.

Finally, but importantly, we can compare the behavior between Treatments US and

UA. As mentioned earlier, the fraction of PNS outcomes is larger in US (47%) than in

UA (31%), although this 16 p.p. difference is not statistically significant at conventional

levels.15 When we restrict the sample to convergent networks, the difference increases to 56

- 27 = 29 p.p. (Panel B of Table 2) and is statistically significant.16 The difference between

these two treatments is intriguing. We conjecture that the disparity may be rooted in the

symmetry of payoffs of the PNS network {H} in Treatment US [2-2-2] compared to the

asymmetry of payoffs of the PNS network {L} in Treatment UA [3-3]. Indeed, in the latter

case, the two agents at the center of each component have strong incentives to deviate, in

the hope of reaching later on the same configuration but with someone else bearing the cost

of two links. However, we would need additional treatments to investigate this hypothesis.

4.2 Payoffs

Table 3 presents the mean network payoff in each treatment. These values are compared

with the theoretical payoff in the PNS network (Treatments UA, US and M) and, in the

case of Treatment N, the average payoff of the networks in the closed cycle. We also

compare them to the theoretical payoff in the efficient networks.

We find significant losses relative to the payoffs that could be collectively obtained: em-

pirical payoffs are between 46% and 71% of the payoffs generated by the efficient networks.

It means that playing non-cooperatively comes at a substantial cost. This is not all that

surprising since efficiency requires sacrifices from some agents, which may be significant

especially in networks other than {T} (in all other networks, at least one subject obtains

a weakly negative payoff).

Interestingly, empirical payoffs are remarkably close to the payoffs in the unique PNS

network for Treatments UA and US, and also not too different from the Pareto superior

PNS in Treatment M. Therefore, while individuals do not always converge to the PNS

network (Table 2), deviations are such that, on average, participants typically do not lose

much from them. The results are similar when we consider only the empirical payoffs of

the convergent networks. Finally, payoffs in Treatment N are 50% higher than the average

15A simple one-tailed t-test (z-test) of the likelihood of convergence to the PNS network between Treat-
ments US and UA yields a p-value of 0.104 (0.100).

16Assuming observational independence, a one-tailed t-test of the difference in the mean shares of the
PNS final network among convergent networks has a p-value of 0.051. Since participants are reshuffled
between matches within a session, this independence assumption may not hold. The effects are imprecisely
estimated in part due to the the small number of match-level observations.
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Table 3: Summary of Network Payoffs

Treatment
Empirical Predicted

All Convergent PNS Closed cycle Efficient

N 63.1 — — 43.1 † 108
(26.6)

UA 85.4 84.8 96 — 120
(17.9) (16.5)

US 81.5 79.4 84 — 114
(12.3) (12.8)

M 52.9 62.7 0 or 70§ — 114
(44.7) (41.5)

Notes: Standard deviation in parenthesis. §Networks {A} and {K} respectively; †Unweighted
average payoffs of all networks in the cycle.

payoff in the closed cycle. This means that subjects not only remain mostly within the

closed cycle, they even stay more often in the high payoff networks within the cycle.17 In

section 6, we discuss heterogeneity in the payoffs of individuals.

4.3 Summary

Subjects in our game understand the strategic nature of network formation and systemat-

ically avoid networks with non-minimally connected components. The collective gain does

not appear to drive the decisions of subjects who, instead, seem to focus on their individual

payoffs. The unique PNS is–to some extent–predictive of behavior, especially in the case

of symmetric network structures. In the absence of a PNS network, individuals remain

in network structures within the closed cycle, while under multiple PNS networks, they

deviate from myopic rational choices and often reach the Pareto superior PNS network.

Finally, payoffs are close to PNS predictions and significantly below efficiency predictions

in all treatments.

17In particular, almost half of the final outcomes within the closed cycle are in networks {F} and {N},
the two highest paying networks in the cycle.
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5 Single decisions

In this section, we estimate an empirical model to understand and predict each decision to

stay or stray from improving paths. The uncertainty from the random pairing of partners

makes it difficult to calculate an ex ante optimal strategy in this game. The safest response

to this uncertainty is to always take myopically rational actions (Jackson and Watts, 2002).

In our games, this strategy would lead to the closed cycle in Treatment N and to the

unique PNS network in Treatments UA and US. However, it would perform very poorly

in Treatment M, with agents stuck in the inferior PNS network {A}. Moreover, agents in

the PNS network in Treatment UA and the Pareto-Superior PNS network in Treatment M

would obtain unequal earnings, as their payoff crucially depends on their position within

the network.

These considerations may lead to alternative strategies that do not consist solely of

myopic rational actions. We consider three intuitive features of the linking process that

might influence these strategies: the turn, the asymmetry between link formation and link

deletion, and the cost of a deviation. With regards to the first feature, we conjecture that

with 12 guaranteed turns, subjects may be more willing to experiment and play riskier

strategies earlier in the game. As for the second, subjects may see the accumulation

of excessive links as relatively less problematic, since link deletion can be implemented

unilaterally whereas link formation requires mutual consent. Finally, the willingness to

experiment by straying from the improving path may also be influenced by the magnitude

of the potential immediate loss from that particular deviation.

5.1 Descriptive statistics

At each turn, each subject in a pair must choose to either “act” or “pass”. If subjects in the

pair are initially unlinked, acting implies proposing a link and passing implies remaining

unlinked. Instead, if subjects are initially linked, acting implies removing a link and passing

implies remaining linked. We are interested in the extent to which actions are myopic

rational in each of these four cases and for each treatment.

Table 4 summarizes the proportion of myopic rational actions across turns. We organize

the data into four groups of turns. We use the last certain turn that subjects get unless

everyone agrees on the network outcome (Turn 12) as a natural point to partition and

further split each of these partitions into two. This split captures behaviors at different

stages. First, subjects attempt to get familiar with the current match and try different

strategies which, with high probability, can be reversed later if desired (Turns [1-6]). Then,

subjects adjust their behavior as the last certain turn approaches (Turns [7-12]). After
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that, subjects enter the random stopping phase where, presumably, they behave under the

assumption that matches can be terminated at any time (Turns [13-18]). Finally, Turns 19

and above are set in a different category because the sample size is dramatically reduced

as turns advance and the sample becomes non-representative of the population.18

Table 4: Myopic Rationality of Actions

Turns

[1-6] [7-12] [13-18] ≥ 19

A. All 0.74 0.82 0.89 0.91
(0.006) (0.006) (0.006) (0.009)

B. By decision problem

i. Stay unlinked (Pass) 0.37 0.39 0.57 0.65
(0.025) (0.022) (0.035) (0.083)

ii. Stay linked (Pass) 0.88 0.88 0.88 0.85
(0.009) (0.013) (0.014) (0.024)

iii. Remove link (Act) 0.66 0.84 0.92 0.94
(0.010) (0.007) (0.007) (0.010)

iv. Propose link (Act) 0.96 0.97 0.98 0.97
(0.009) (0.006) (0.007) (0.015)

C. By treatment

Treatment N 0.83 0.83 0.88 0.94
(0.011) (0.011) (0.012) (0.014)

Treatment UA 0.81 0.80 0.89 0.97
(0.012) (0.012) (0.012) (0.018)

Treatment US 0.76 0.79 0.90 0.92
(0.013) (0.012) (0.012) (0.018)

Treatment M 0.56 0.86 0.90 0.86
(0.015) (0.010) (0.011) (0.019)

Although formal tests are presented in the regression analysis of section 5.2, Table 4

is instructive. Panel A suggests that actions are more myopically rational as players get

closer to the end of the match.

Panel B investigates myopic rationality by type of decision. We examine choices under

18The split is arbitrary. Similar results are obtained if the first and third partition are changed marginally.
The key issue is to introduce a separation at Turn 12.
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four mutually exclusive conditions, namely when the rational action is: (i) to pass and stay

unlinked; (ii) to pass and stay linked; (iii) to remove an existing link; and (iv) to propose

a new link. By comparing conditions (i) with (ii), and (iii) with (iv), we find evidence

that individuals deviate more from improving paths in decisions that reduce the number

of links than in decisions that increase the number of links. By comparing conditions (i)

with (iii), and (ii) with (iv), subjects deviate more by being excessively passive (failing to

act when they should) than by being excessively active (acting when they should not).19

However, our regressions results (Table 9) suggest that this last result does not hold once

we control for subject fixed effects and the marginal payoff from myopic rational choices.

Panel C displays myopic rationality across treatments and confirms the results of Panel

A: in all four treatments, subjects are significantly less myopic rational before Turn 12

than after Turn 12 (p < 0.001). Interestingly, the difference in myopic rationality between

[1-6] and [7-12] described in Panel A is entirely driven by Treatment M. This supports the

hypothesis that early deviations are due in part to farsightedness. Indeed, in Treatment M

– and only in that treatment – three instances of non-myopic rational choices are needed to

escape the basin of attraction of PNS network {A}. Figure A.1 in Appendix A.3 illustrates

the findings of Panels B and C for every turn of the game (up to Turn 18).

Finally, Table 5 presents the number of instances in which the group of six subjects

chooses to “stay” v. “leave” the PNS network, once the group has arrived to it, broken

down by treatment and turn (which naturally, excludes Treatment N). We also report

the total number of observations (turns times number matches) in each case. Notice that

leaving a network is easier than staying on it, as it only requires one out of three pairs to

change the current state.

Table 5: Movements from the PNS Network

Turns [1-12] Turns [≥ 13]

Stay Leave (Total) Stay Leave (Total)

Treatment UA 17 4 384 19 1 128
Treatment US 69 24 384 44 0 143
Treatment M - {A} 0 32† 384 – – 177
Treatment M - {K} 51 19 384 67 9 177

Notes: † All movements away from {A} were performed on the first turn.

19A set of t-tests (not reported for brevity) confirms that for each turn group, the mean differences in
myopic rationality both between conditions (i) and (iii) and between conditions (ii) and (iv) are negative
and statistically significant at the 0.1 percent level.
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Although the most frequent action is to stay in the PNS network once it is reached,

there is still a non-negligible fraction of instances in Turns [1-12] where individuals leave it

(19% to 26%). This tendency practically disappears in the treatments with a unique PNS

network (UA and US) when each turn can be final. Surprisingly, even though Treatment

M has a rather predictable outcome (44% of matches end up in the Pareto superior PNS

network, see Table 2), subjects sometimes leave that network even after Turn 12. By

contrast, individuals invariably leave the stochastically stable but low-payoff PNS network

{A} in Turn 1 and never come back to it.

5.2 Regression Analysis

In this section, we present a regression analysis of individual decisions. We first describe

the empirical specification and estimation strategy that we will use to test the subsequent

hypotheses. Then, we describe our hypotheses followed by the results.

5.2.1 Specification

As a formal test, we estimate a linear probability model (LPM) with individual fixed

effects and regress the probability that a subject chooses the myopic rational action on

the attributes of the problem. We choose LPM with fixed-effects instead of a non-linear

model (e.g., logit) because its coefficients are easier to interpret, especially in the presence

of both fixed-effects and interaction terms where the derivation of marginal effects can be

non-trivial (Ai and Norton, 2003; Greene, 2010).20 For each treatment, we estimate the

following specification:

P(Ynt = 1 | Xnt, cn) = β0 + Xnt β + cn (1)

where Y ij
nt indicates whether the action that moves subject n at Turn t is myopic rational

(= 1) or not (= 0), and Xij
nt captures the vector of attributes. Meanwhile, cn captures

the unobservable characteristics of subject n which may affect how she makes decisions.

Unobservable individual characteristics are unlikely to be independent from the attributes

of the decisions, and hence, we implement an individual fixed effects specification. The

standard errors are clustered at the session level. At the end of the section, we briefly

discuss some extensions and alternative representations.

20In Appendix A.1, we show that the partial effects estimates are qualitatively similar using an LPM and
a Logit model with interactions (but without fixed effects), as one would expect (Wooldridge, 2010, p.563).
We do not consider the fixed-effects Probit model given its known bias (Greene, 2004).
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We can use the regression framework to investigate the four types of decisions described

in Panel B of Table 4. Consider first the following reduced specification:

E(Y ij
nt | X) = β0 + β1 ·morelinkij + β2 · actij + β3 · (morelinkij × actij) + ε (2)

where morelinkij and actij are dummy variables and ε is the residual. The variable

morelinkij takes on a value of 1 if between networks i and j the network with more

links gives the individual a higher payoff. The variable actij takes on a value of 1 if the

myopic rational choice is to act (Propose or Remove) instead of pass.

Under the LPM, the interpretation of these β-coefficients is straightforward. The coeffi-

cient β0 captures the probability that a subject stays unlinked in accordance to the myopic

rational strategy (myopic rat.). Similarly, β0 + β1 captures the probability that a subject

stays linked in accordance to the myopic rational strategy. Table 6 provides interpretations

for the different combinations of coefficients.

Table 6: Regression Coefficients and Types of Decision Problems

Interpretation
more

actij Function
linkij

i. P(myopic rat. | myopic rat. = stay unlinked) 0 0 β0
ii. P(myopic rat. | myopic rat. = stay linked) 1 0 β0 + β1
iii. P(myopic rat. | myopic rat. = remove link) 0 1 β0 + β2
iv. P(myopic rat. | myopic rat. = propose link) 1 1 β0 + β1 + β2 + β3

We extend this basic specification with three sets of additional variables (and the in-

dividual fixed effects) to explore individual strategies. The specification for the extended

model is:

E(Y ij
nt | X) = β0 + β1 ·morelinkij + β2 · actij + β3 · (morelinkij × actij)

+ γ ·mpayij +
∑4

t=1 χt · turn sp(t) + cn + ε
(3)

where mpayij denotes the marginal payoff from making a myopic rational choice to evolve

from network i to network j. We also include a linear spline on the turn variables, turn sp,

with knots at turns 6, 12, and 18 to control for possible turn effects.21 The knot choices

mimic the turn grouping we did for the descriptive analysis.

21Hence, the variable turn sp(1) is the spline for Turns [1-6], turn sp(2) is for Turns [7-12], turn sp(3)
is for Turns [13-18] and turn sp(4) is for Turns 19 and greater.
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5.2.2 Hypothesis and results

Hypothesis 2 Subjects are more likely to follow the improving path:

(a) After Turn 12;

(b) When the myopic rational action increases the number of links;

(c) When the marginal loss from a deviation is larger;

(d) When deviations are not necessary to reach a (Pareto-Superior) PNS.

Hypothesis 2(a) posits that behavior may become more myopic rational when the current

turn can be the final one, and therefore potentially irreversible. Hypothesis 2(b) suggests

that when it is easier to reverse excessive links than insufficient links (because link formation

requires mutual consent whereas link deletion does not), subjects are more willing to deviate

by hoarding links. Hypothesis 2(c) builds on the idea that the cost of a “mistake” may

affect the decision to stray from the improving path. Finally, Hypothesis 2(d) states that

farsighted individuals may choose non-myopic rational actions in order to reach collectively

superior outcomes. Our test of these hypotheses yields the following results.

Result 2 Our analysis shows that:

(a) Actions are more myopic rational after Turn 12.

(b) In early turns, subjects deviate from improving paths by maintaining excessive links

(over-proposing and not removing redundant links). In later turns, subjects deviate by not

removing redundant links.

(c) The size of marginal payoffs affects the likelihood of a deviation from myopic ratio-

nality in early turns of all treatments.

(d) Choices in early turns of Treatment M are less myopic rational compared to those

in the other treatments, which is suggestive of forward-looking behavior.

We find strong evidence for Hypothesis 2(a). Table 7 below presents the results of regressing

the likelihood of a myopic rational action on whether an observation comes after Turn 12.

Consistent with the t-test of mean differences performed in section 5.1 (Table 4), we find

a statistically significant and positive increase in myopic rationality among actions taken

after Turn 12.22

22In Appendix A.4, we perform more elaborate tests with interactions between the turn dummy variable
and the characteristics of the decision problem and find similar results. We also performed a simple
regression of the time it took individuals to take an action and found no significant differences across
treatments or turns (data omitted for brevity).
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Table 7: Myopic Rational Action Before and After Turn 12

N UA US M
(1) (2) (3) (4)

1(turn>12) 0.064∗∗∗ 0.072∗∗∗ 0.131∗∗∗ 0.136∗∗∗

(0.010) (0.018) (0.031) (0.017)
morelink 0.128∗∗∗ 0.112∗∗∗ 0.142∗∗∗ 0.147∗∗∗

(0.022) (0.019) (0.015) (0.009)
act -0.292∗∗∗ -0.498∗∗∗ -0.281∗∗∗ -0.210∗

(0.069) (0.032) (0.033) (0.092)
morelink × act 0.205∗∗ 0.443∗∗∗ 0.269∗∗∗ 0.044

(0.065) (0.025) (0.042) (0.104)
mpay 0.002∗∗ 0.004∗∗∗ 0.006∗∗∗ 0.019∗∗∗

(0.001) (0.001) (0.002) (0.002)
Constant 0.801∗∗∗ 0.776∗∗∗ 0.690∗∗∗ 0.470∗∗∗

(0.026) (0.021) (0.016) (0.021)

Individual Fixed Effects Yes Yes Yes Yes
Observations 3276 3072 3162 3366
Adj. R2 0.165 0.252 0.246 0.224

Notes: The model is estimated using a linear probability model. Standard
errors are clustered at the session level in parentheses. ∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001

With Hypothesis 2(b), we test whether subjects incorporate the asymmetric need for

consent between link formation v. link removal in their strategies. Since link formation

requires mutual consent while removal does not, one possible strategy would be to form

and maintain some redundant links early on. As the game approaches the end, subjects

begin to unilaterally remove some of them. Table 8 presents the regression results based

on equation (1) with individual fixed effects. Its bottom panel presents estimates of the

linear combinations of the different coefficients. These linear combinations are derived from

Table 6 to allow immediate comparisons of the probabilities that individuals make myopic

rational choices for the different decision problems.

Our regressions provide evidence in support of Hypothesis 2(b). Table 8 shows that in

Turns [1-12] the coefficient for myopic rationality in all four treatments is highest when the

myopic rational action is to stay linked (ii), followed by propose a link (iv), stay unlinked

(i), and remove a link (iii). For Turns [≥ 13], subjects are still most likely to deviate by

not removing a link when they should (iii); however, they deviate less in Turns [≥ 13]

compared to in Turns [1-12].23 Overall, the evidence suggests that subjects use redundant

links as a form of insurance, as was found in Deck and Johnson (2004).

23Since players are assigned a fixed role ID, we add role ID to the specification in Eq.1. We found no
systematic effect of role ID on myopic rationality (table omitted for brevity).
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Hypothesis 2(c) examines the impact of payoff magnitudes on choices. With a myopic

rational strategy, the extent of the marginal payoff should be irrelevant. This contrasts

with stochastic choice theories (random utility model, quantal response equilibrium, etc.)

where mistakes are less prevalent if the associated costs are higher. It also relates to the

traditional exploration-exploitation dilemma, where lower opportunity costs are conducive

to the inspection of alternative (hopefully better) options. The extended specification of

equation (3) allows us to investigate this possibility. We interact the payoff variable with

the interactions between morelink and act to capture differential effects of marginal payoffs

across decision problems.

The results of the regressions are presented in Table 9. We linearly combine the coeffi-

cients for the payoff variables to explore the heterogeneity of the payoff-size effects across

decision problems. We use a strategy similar to the way we linearly combined in Table 6

the coefficients of the morelink, act and morelink × act variables to examine the myopic

rationality of the different decision problems. Hence, for example, γ0 measures how the

size of the marginal payoff affects the probability that subjects take the myopic rational

choice to stay unlinked, and so on.

For Turns [1-12] in Treatments N, UA and US, myopic rational actions are positively

and significantly correlated with the size of marginal payoffs if the myopic rational action

reduces the number of links (cases (i) and (iii)). For Treatment UA it is also correlated

if the myopic rational action increases the number of links. Several of these coefficients

lose their significance in Turns [≥ 13]. Meanwhile, for Treatment M, all of the payoff-

coefficients are significant in both [1-12] and [≥ 13] except when the myopic rational choice

is to remove a link. These results support Hypothesis 2(c) and provide additional insights

on how subjects deviate from improving paths. The evidence suggests that subjects pay

more attention (and react more) to the opportunity loss from staying unlinked, especially

early in the game.

Finally, with Hypothesis 2(d), we conjecture that strategic agents would deviate from

improving paths if it is necessary to reach a collectively superior outcome. By design,

such deviations are only pertinent for Treatment M: they are necessary to escape the zero

payoff, stable network {A} in the first few turns. We therefore expect a lower share of

myopic rational actions in the early turns of Treatment M compared to the later turns of

that treatment and to all turns of the other treatments.

We find empirical support for this hypothesis. We regress the myopic rationality of

decisions on an indicator variable for Treatment M and present the results in Table 10.

Panel A shows that when pooled across all decision types (column 1), individual actions are

more likely to deviate from myopic rationality in Turns [1-6]. Columns 2–5 show a higher
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Table 10: Myopic Rationality and Treatment M

All
decision

types

Myopic rational action to [. . . ]

stay
unlinked

stay
linked

remove
link

propose
link

(1) (2) (3) (4) (5)

Panel A. Decisions in Turns [1-6]

Treatment M -0.242∗∗∗ -0.270∗∗∗ -0.098∗∗ -0.057 -0.098∗∗

(0.024) (0.022) (0.028) (0.076) (0.030)
Constant 0.805∗∗∗ 0.748∗∗∗ 0.977∗∗∗ 0.392∗∗∗ 0.900∗∗∗

(0.006) (0.007) (0.006) (0.025) (0.004)

Observations 4608 2254 538 364 1452
Adj. R2 0.0924 0.176 0.141 0.212 0.0844

Panel B. Decisions in Turns [7-12]

Treatment M 0.046∗ 0.037 -0.070∗∗∗ 0.052 -0.021
(0.020) (0.029) (0.017) (0.090) (0.049)

Constant 0.810∗∗∗ 0.827∗∗∗ 0.988∗∗∗ 0.384∗∗∗ 0.887∗∗∗

(0.005) (0.008) (0.005) (0.013) (0.012)

Observations 4608 2578 855 482 693
Adj. R2 0.0709 0.125 0.0711 0.0682 0.253

Panel C. Decisions in Turns [≥ 13]

Treatment M -0.007 -0.005 -0.056∗∗ 0.184∗ -0.101
(0.013) (0.017) (0.018) (0.092) (0.093)

Constant 0.901∗∗∗ 0.924∗∗∗ 0.995∗∗∗ 0.552∗∗∗ 0.897∗∗∗

(0.004) (0.005) (0.006) (0.015) (0.024)

Observations 3660 1972 633 230 825
Adj. R2 0.0699 0.0953 0.000907 0.0677 0.238

Individual Fixed Effects Yes Yes Yes Yes Yes

Notes: The model is estimated using a linear probability model. Standard errors are clustered at the
session level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

rate of deviations in Treatment M across all decision types, and they are all statistically

significant except for when the rational action is to remove a link (column 4).24 Consistent

with an attempt to escape network {A}, the magnitude of the coefficient is largest for the

decision to stay unlinked (column 2). Panels B and C show that the difference between

Treatment M and all other treatments vanishes in Turns [7-12] and Turns [≥ 13], except for
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when the rational action is to stay linked (column 3). It reinforces the idea that deviations

are motivated by farsightedness, and therefore have an effect only in the first few turns.

This finding provides evidence for forward-looking behavior in a fairly complicated

network formation game. It is in line with Pantz (2006) who found that some subjects

manage to reach the forward-looking network structure, as well as Kirchsteiger et al. (2016)

who found evidence for farsightedness, although only in cases that require one or two

anticipatory steps. Payoff-motivated deviations are particularly impressive in our setting

given the substantial complexity of the environment: a large network (six subjects), a

significant resistance (four mutations to evolve from the starting stable network to the

Pareto superior PNS network), and a considerable uncertainty (due to random pairing and

random ending).

As a robustness check, in Appendix A.5, we use a parsimonious model that incorpo-

rates insights from Result 2 to conduct an out-of-sample (or out-of-treatment) exercise.

We estimate a logit model (without individual fixed effects) of myopic rationality that

takes into account the importance of marginal payoff, group sizes, and stages of the game

(before/after Turn 12). We then estimate the coefficients of the model with a sample that

excludes observations from each of the treatments and use these coefficients to predict my-

opic rationality in the excluded treatment. We show that a parsimonious model based on

these results predicts myopic rationality of actions rather well.

5.3 Summary

The analysis at the single decision level suggests that subjects take for the most part the

myopic rational action. At the same time, we highlight important and systematic devia-

tions. Indeed, we observe less myopically-rational actions in turns with a sure future than

in random-ending turns. Deviations also tend to take the form of excessive links, possibly

because they can be removed unilaterally, although proving this hypothesis would require

further work. Deviations are also more prevalent the smaller the marginal payoff losses,

as expected in a behavioral theory where “mistakes” depend inversely on loss magnitudes.

Finally, deviations also occur as a sign of farsightedness, that is, when they are needed in

order to escape a low-payoff PNS network and reach a high-payoff PNS one.

24The lack of statistical significance is likely due to the fact that, as discussed earlier, redundant links
are used as insurance in all treatments. Therefore the share of myopic rational actions are small overall.
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6 Choices by subjects

So far we have studied choices at the network outcome and single decision levels. One

question that remains unanswered is the degree of heterogeneity between subjects. A

simple way to address this question is to take an intermediate approach and determine

how often each subject plays the myopic rational strategy.

Figure 2 plots the cumulative distribution function (CDF) of the fraction of myopic

rational choices by each subject in each treatment. A steep CDF reflects homogeneity across

subjects whereas a right shift captures a more myopic rational behavior on aggregate. In

Treatments N, UA and US behavior is to a large degree myopic rational and homogeneous:

80% of subjects choose the myopic rational action 75% of the time or more. In Treatment

M, behavior is slightly less myopic rational and more heterogeneous. A Kolmogorov-

Smirnov test confirms this observation: the CDF of Treatment M is different from the

CDF of Treatments N, UA and US at the 1% level, whereas no statistical difference is

observed between the CDFs in Treatments N, UA and US at the 10% level.
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Figure 2: Empirical CDF of myopic rationality by treatment

Heterogeneity can also be studied by searching for clusters of people (as in Camerer

and Hua Ho (1999) for example). This allows us to quantify the degree of similarity of

subjects’ choices within and between clusters. We use documented differences in behavior

across treatments and turns to choose the clustering variables (see Table 4, Panel C). A test

of differential myopic rationality between Turns [1-6] and [7-12] shows that the difference

is only statistically significant for Treatment M, whereas myopic rationality before and
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after Turn 12 is significant in all treatments. We therefore retained four variables: myopic

rationality in Treatments N, UA, and US before Turn 12; myopic rationality in Turns

[1-6] and in Turns [7-12] in Treatment M; and myopic rationality in Turns [≥ 13] in all

treatments.

There are many clustering methods but they usually require the number of clusters

and the clustering criterion to be set ex-ante rather than endogenously optimized. Mixture

models, on the other hand, treat each cluster as a component probability distribution.

Thus, the choice of the model and the number of clusters is made using Bayesian statisti-

cal methods (Fraley and Raftery, 2002). Following Brocas et al. (2014), we implement a

model-based clustering analysis with the mclust package in R (Scrucca et al., 2016). We

use mclust ’s default values for the maximum number of clusters (nine) and models (four-

teen) to consider. The algorithm allows cluster distributions to be diagonal, spherical, or

ellipsoidal and clusters to have equal or varying volumes, shapes and orientations. It then

finds the combination of model and number of clusters that yields the maximum Bayesian

Information Criterion (BIC).

Hypothesis 3 There are three types of subjects: (i) myopic rational, (ii) random, and (iii)

strategic (who deviate from myopic rationality only in early turns, especially in Treatment

M). Earnings are lowest for random subjects and highest for strategic subjects.

We anticipate substantial heterogeneity across individuals. In a game where the option

value of farsightedness is difficult to compute, focusing exclusively on the current costs and

benefits of an action, as ‘myopic rational’ subjects would do, seems a plausible, reasonably

sophisticated strategy. Since the game is inherently difficult, we also expect to observe some

individuals to be “lost in the network”, and exhibit close to ‘random’ behavior. Finally,

the most intriguing behavior relates to subjects who realize the appeal of myopic rational

choices but also try to exploit its shortcomings. These ‘strategic’ subjects will deviate more

frequently early in the game (when actions are reversible) and in Treatment M (where the

deviation is necessary to escape the low payoff stable network and reach the Pareto superior

stable one). They are also expected to accumulate the highest earnings.

Result 3 Individuals are endogenously grouped into: (i) a cluster with (mostly) myopic

rational behavior (48%); (ii) a cluster with (mostly) random behavior (8% of subjects); and

(iii) two clusters with different degrees of strategic behavior (44%). Earnings are lowest for

subjects with erratic behavior, but are not very different between the remaining clusters.

Figure 3 depicts the performance of the models as a function of the distribution, shape,

volume, orientation and number of clusters. Models with a small number of clusters (two
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to four) outperform models with a large number of clusters. The model that maximizes

the BIC–which we will retain for our analysis–has four clusters with diagonal distribution,

varying volume and equal shape (VEI).25
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Figure 3: Bayesian Information Criterion (BIC) by model and number of clusters

Table 11 shows the average myopic rationality for each cluster and clustering variable

in the four-cluster VEI model. We also report the overall frequency of myopic rational

choices, average earnings, and number of subjects in the cluster. The clusters are sorted

based on the overall myopic rationality (column 5), from highest to lowest.

Subjects in Cluster 1 are the most myopic rational. They exhibit some strategic be-

havior by deviating from the improving path in the early turns of Treatment M, but even

then, they take more myopic rational actions compared to those in other clusters. They

very rarely deviate from myopic rationality during the stochastic ending turns. On the

opposite end, subjects in Cluster 4 are the least myopic rational in all stages of the game

and do not adjust their actions in the stochastic ending turns. This cluster represents the

25In Appendix A.6 we provide a graphical representation of the clusters in two-dimensional projections
to visually assess the degree of homogeneity within clusters and heterogeneity across clusters.
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Table 11: Clustering Based on Myopic Rational Behavior

Cluster

Treatment and Turn
Total

Myopic
Rational

Earnings NN-UA-US M All

[1-12] [1-6] [7-12] [≥ 13]
(1) (2) (3) (4) (5) (6) (7)

1 0.86 0.66 0.94 0.94 0.87 93.7 46
(0.010) (0.02) (0.009) (0.006) (0.007) (4.2)

2 0.82 0.46 0.92 0.82 0.80 96.7 14
(0.01) (0.02) (0.01) (0.009) (0.006) (6.5)

3 0.76 0.46 0.73 0.92 0.78 95.2 28
(0.02) (0.04) (0.03) (0.01) (0.01) (5.4)

4 0.64 0.52 0.68 0.67 0.64 90.4 8
(0.04) (0.08) (0.06) (0.03) (0.03) (11.5)

Notes: Standard errors in parenthesis.

set of subjects with severe difficulties in understanding the most basic strategic aspects of

the game.

Meanwhile, Clusters 2 and 3 capture two different behaviors among the strategic sub-

jects. Column 5 shows similar rates of myopic rationality in these two clusters. In support

of Hypothesis 2(d), subjects in both clusters seem to grasp the strategic necessity of devi-

ating in the first 6 turns of Treatment M (column 3). However, subjects in Cluster 2 do

not adapt their endgame strategy by taking more myopic rational actions after Turn 12. In

contrast, and in accordance to Hypothesis 2(a), subjects in Cluster 3 deviate significantly

more often before turn 12 than after turn 12 in all treatments. They are, arguably, the

most strategic subjects.

Earnings are the lowest for subjects who exhibit random-like behavior (Cluster 4),

but are not very different among the remaining three clusters. This can be expected for

two reasons. First, because PNS networks do not necessarily generate the highest payoffs.

Second, because payoffs in this game are (very) noisy signals of the strategy followed by the

individual: one’s payoff depends on the behavior of the five other subjects in the network as

well as the subject’s final position in the component. The most strategic subjects may be

negatively affected by individuals who use suboptimal strategies. Also a strategic subject

may move the group towards the PNS network but, in the process, end up bearing a larger

number of links.

To investigate the effect of subject composition on network outcomes, we count for
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each match the number of subjects from each cluster. We then regress whether the match

ended in a cycle (for Treatment N), the PNS network (for Treatments UA and US), or

the Pareto-superior PNS network (for Treatment M) on the number of subjects from each

cluster. Cluster 1, whose subjects’ behavior is most similar to those assumed in theory, is

the omitted category in the regression. The models are estimated with session fixed effects

and the results are presented in Table 12.

Table 12: Cluster and Network Outcomes

N UA US M
(1) (2) (3) (4)

Cluster 2 -0.17 -0.28 -0.16 -0.27∗∗

(0.13) (0.18) (0.17) (0.10)
Cluster 3 -0.20 0.03 -0.15 -0.09

(0.11) (0.23) (0.13) (0.10)
Cluster 4 -0.20 0.05 -0.29∗∗∗ 0.20

(0.20) (0.14) (0.04) (0.12)
Constant 1.25∗∗∗ 0.48 1.02∗∗ 0.74∗∗

(0.17) (0.46) (0.34) (0.27)

Session FE Yes Yes Yes Yes
Observations 32 32 32 32
R2 0.18 0.30 0.40 0.33

Notes: The model is estimated using a linear probability model. Stan-
dard errors are clustered at the session level in parentheses. ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001

We find that the subject composition significantly affects the network outcome in Treat-

ments US and M. In the former, the presence of the least sophisticated Cluster 4 subjects

negatively affects the likelihood of ending in the PNS network with symmetric payoffs. In

the latter, the presence of Cluster 2 subjects — who do not adapt their endgame strategy

by becoming more myopic rational after Turn 12 — reduces the likelihood of ending in the

Pareto-superior PNS network. The proportion of different subject types does not influence

the outcome in Treatments N and UA.

Overall, the cluster analysis highlights the significant heterogeneity in individual be-

havior, especially with respect to the level of myopic rational decisions across turns and

treatments. It also demonstrates the importance of group composition for network out-

comes and earnings, with the presence of a random player significantly decreasing the

likelihood of reaching some PNS networks.
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7 Conclusion

We study the dynamic formation of networks where links are formed through mutual

consent, but can be removed unilaterally. Our subjects rarely converge to the efficient

network (the network where all six subjects are connected), which suggests that they do

not consider the total value of the network as a key criterion when making their decisions.

Instead, choices are largely consistent with (mostly myopic) individual maximization of

payoffs. The process often, but certainly not always, converges to the PNS network if it

exists. Interestingly, not all PNS networks are equal, and a symmetric network structure

seems to predict network outcomes better. We also observe significant deviations whenever

they are necessary to leave a low-payoff PNS and reach a Pareto Superior one. As for

single decisions, although myopic rationality is predominant, we also observe systematic

deviations from it. In particular, myopic rationality is less prevalent at the margin when

actions are reversible, when marginal payoff losses are smaller, and when actions involve

excessive links that can be removed unilaterally later on. Finally, we also notice a significant

heterogeneity in behavior across subjects, with a combination of myopic rational, strategic

and random subjects.

Despite the recent advances, there is still much to learn about network formation,

both theoretically and experimentally. On the theory front, it would be interesting to

incorporate behavioral imperfections into existing models. The tendency observed in our

data towards fewer deviations from myopic rationality as marginal losses increase and as

matches enter the probabilistic ending phase suggests that individuals optimize subject

to imperfect choice, imperfect foresight and/or imperfect understanding of the game. To

our knowledge, however, no model has yet been developed to capture these frictions. On

the experimental front, ecological validity is a concern. Indeed, we feel that our cost

and benefit representation of adding and removing links captures the essence of social

networks in an excessively stylized and abstract way. The use of laboratory studies in the

field or laboratory studies that exploit social technologies (Facebook, Twitter, LinkedIn,

etc.) would add a more realistic dimension to the network formation problem without

compromising the controlled environment of the laboratory.
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Figure 4: Treatment N. No PNS network and a Closed Cycle.
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Figure 6: Treatment US. Unique PNS network with symmetric payoffs.
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Figure 7: Treatment M. Multiple Pareto rankable PNS networks.
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Sutter, “Experimental Games on Networks: Underpinnings of Behavior and Equilibrium

Selection,” Econometrica, September 2014, 82 (5), 1615–1670.

Chen, Yan and Tayfun Sönmez, “School choice: an experimental study,” Journal of

Economic Theory, March 2006, 127 (1), 202–231.

Comola, Margherita and Marcel Fafchamps, “An experimental study on decentral-

ized networked markets,” Journal of Economic Behavior & Organization, 2018, 145,

567–591.

Conte, Anna, Daniela T. Di Cagno, and Emanuela Sciubba, “Behavioral Patterns

in Social Networks,” Economic Inquiry, April 2015, 53 (2), 1331–1349.

Deck, Cary and Cathleen Johnson, “Link bidding in laboratory networks,” Review

Economic Design, April 2004, 8 (4).

Dutta, Bhaskar and Suresh Mutuswami, “Stable Networks,” Journal of Economic

Theory, October 1997, 76 (2), 322–344.

Echenique, Federico, Alistair J Wilson, and Leeat Yariv, “Clearinghouses for two-

sided matching: An experimental study,” Quantitative Economics, 2016, 7 (2), 449–482.

40



and Leeat Yariv, “An Experimental Study of Decentralized Matching,” 2013. Working

Paper.

Falk, Armin and Michael Kosfeld, “It’s all about Connections: Evidence on Network

Formation,” Review of Network Economics, January 2012, 11 (3).
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APPENDIX

A Additional analyses

A.1 Marginal Effects in Linear Probability Model and Logit

In this section, we illustrate the robustness of the LPM partial effect estimates when the

individual fixed effects are not included. Table A.1 below presents the marginal effects from

LPM and logit where both are estimated without the fixed effects. Panel A is similar to

Table 8 in the main paper, albeit without the fixed effects. Comparisons of the estimated

coefficients in Panels A and B suggest that the partial effect estimates we obtain from LPM

are very close to those from logit estimates.
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A.2 Geodesic distance to efficient and PNS networks

In this section, we provide a complementary study of the difference between observed and

predicted outcomes to the one presented in section 4.1. More precisely, we calculate the

shortest (or “geodesic”) distance between the resulting networks and the closest network

in the closed cycle (for Treatment N) or the PNS networks (for Treatments UA, US and

M) as well as the distance between the resulting networks and the efficient networks. For

the latter, we separately calculate the distance to the closest of all the efficient networks

{O,P,Q,R, S, T} and to the line network {T}.1

Panel A of Table A.2 shows that for Treatments N and US, the distance to the closed

cycle and the PNS network respectively is substantially shorter than the distance to the

efficient networks. For Treatment M, the distance is shorter to the Pareto superior PNS

network {K} but longer to the stochastically stable initial PNS network {A}. For Treat-

ment UA, however, the distance from the PNS network is equal to the distance from the

efficient line network and marginally longer than the distance from the closest efficient

network, suggesting a larger dispersion in behavior.

Panel B of Table A.2 presents the average distance between outcomes and predicted

networks conditional on convergence (no change in the last three turns).2 For Treatments

US and M, the result provides further support for a reduced distance to the Pareto superior

and the unique PNS network, respectively. In contrast, the distance from the convergent

network to the efficient network is lower than to the PNS network in Treatment UA.

Results in that treatment are explained by the fact that outcomes are split almost equally

between the PNS network {L} and the pairwise unstable network {N}. Since the distance

between these two networks is two and both of them are at a distance of one to the efficient

networks, the distance from the stable network and the efficient networks are similar. It is

difficult to infer from the outcomes alone where the formation processes is leading toward,

and why {N} is appealing. Our analysis of individual decisions (Result 2) provides a

plausible explanation for these findings.

1If agents were to aim at the efficient network, the line network is the most likely outcome since it
distributes payoffs most equally. For example {O}, which is never played in our experiment, is efficient but
requires one player to form 5 links and therefore bear significant payoff losses (30 to 32 tokens depending
on the treatment).

2We do not consider Treatment N since convergence is not expected.
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Table A.2: Average distances from outcomes

Treatment
Closed

cycle†
PNS

Shortest
Efficient

Efficient

Panel A. All

N 0.41 - 1.66 2.03
UA - 1.41 1.28 1.41
US - 1.00 1.94 2.06
M - {A} - 3.66 1.41 1.66
M - {K} - 0.91 1.41 1.66

Panel B. Conditional on Convergence

N 1.00 - 1.00 1.80
UA - 1.53 1.20 1.33
US - 0.75 2.13 2.25
M - {A} - 3.93 1.07 1.07
M - {K} - 0.60 1.07 1.07

Notes: †Distance to the closest network in the cycle.

A.3 Myopic rationality by treatment and decision problem

Figure A.1 further illustrates the results in Panels B and C of Table 4. We plot for each

treatment the proportion of myopic rational behavior across turns when passing is rational

(B1) and when acting is rational (B2). In all treatments, players maintain more links in

all turns than would be observed if they played myopically rational all the time. The gap

is bigger and the variation larger for decisions where acting is myopic rational (figures on

the right), although the difference narrows as the match nears its end.

A-4



1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(i) Stay unlinked (ii) Stay linked

B1. Myopic rational to pass

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(iii) Remove (iv) Propose

B2. Myopic rational to act

(a) Treatment N

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(i) Stay unlinked (ii) Stay linked

B1. Myopic rational to pass

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(iii) Remove (iv) Propose

B2. Myopic rational to act

(b) Treatment UA

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(i) Stay unlinked (ii) Stay linked

B1. Myopic rational to pass

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(iii) Remove (iv) Propose

B2. Myopic rational to act

(c) Treatment US

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(i) Stay unlinked (ii) Stay linked

B1. Myopic rational to pass

1
.8

.6
.4

.2
0

M
yo

pi
c 

ra
tio

na
lit

y

6 12 18
Turn

(iii) Remove (iv) Propose

B2. Myopic rational to act

(d) Treatment M

Figure A.1: Myopic rationality by treatment and decision problem
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A.4 Myopic rationality by turn

In this section, we provide further robustness checks of a structural break at Turn 12 by

interacting different types of decision with whether the decision was taken after Turn 12.

We estimate models based on equations (2) and (3), but interacted each of the variables

with an indicator variable of whether an observation comes after Turn 12, 1(turn > 12).

Table A.3 presents the results. We present the p-value of a joint test of all interacted

variables at the bottom of the table as a test of structural break. For all treatments and

specifications, the null hypothesis of no structural break at Turn 12 is rejected at the 5%

significance level.
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A.5 Out-of-sample model predictions

As a robustness check, we study the capacity of our empirical model to predict actions.

Our prediction model uses a relatively parsimonious specification that incorporates insights

from Result 2. We estimate the following Logit model:

logit(P(Ynt = 1 | Xnt, cn)) = β0 + β1 ·morelinkij + β2 · actij + β3 · (morelinkij × actij)+
+ β4 · 1(turn > 12) + β5 · [morelinkij × 1(turn > 12)]+

+ β6 · [actij × 1(turn > 12)] + β7 · [morelinkij × actij1(turn > 12)]+

+ γ0 ·mpay + γ1 · (mpay ×morelink)+

+ γ2 · [mpay × 1(turn > 12)] + γ3 · [mpay ×morelink × 1(turn > 12)]+

+ θ · turnSpline1−6 + ε

(A.1)

In this equation, we supplant the basic model of equation 1 with (i) mpay and (ii)

mpay×morelink variables to incorporate Results 2(b) and 2(c). To incorporate the insight

from Result 2(a) and account for the structural break at Turn 12, all of these variables

are interacted with the indicator variable 1(turn > 12). Furthermore, to incorporate

Result 2(d), we add a spline for Turns [1-6] to capture deviations from myopic rational-

ity in early turns of Treatment M. To maintain model parsimony, we do not include the

individual fixed effects.

We use the model to conduct an out-of sample (or out-of-treatment) prediction exercise.

For each treatment, we estimate the coefficients of the model with a sample that excludes

observations from that treatment. Once the coefficients are recovered, we use the model to

predict the actions in the excluded treatment. Table A.4 shows the coefficients from the

estimation exercise. We then use these coefficients to predict the out-of-sample actions of

the first 18 turns. Figure A.2 graphically depicts for each treatment the plot of the myopic

rationality of actual choices (dashed line), out-of-sample predicted choices (solid line), and

95% confidence interval of predicted choices.

The model generally predicts actions well, even though it performs less well in predicting

initial behavior and switches at the beginning of the probabilistic turns. Indeed, actions

in all treatments are more likely to be outside the prediction intervals in the first few

turns and in the choices immediately after Turn 12 (where the model predicts a steeper

change than empirically observed). However, the absolute differences are always relatively

small. The largest discrepancy occurs in the first three turns of Treatment M, where the

proportion of myopic rational choices is very significantly below the model prediction.
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Table A.4: Predictive Logistic Model of Myopic Rationality

N UA US M
(1) (2) (3) (4)

1(turn>12) 2.448∗∗∗ 2.104∗∗∗ 2.854∗∗∗ 1.669∗∗∗

(0.444) (0.431) (0.584) (0.393)
morelink 2.989∗∗∗ 3.171∗∗∗ 3.480∗∗∗ 3.761∗∗∗

(0.318) (0.326) (0.337) (0.391)
. . .× 1(turn>12) -2.290∗∗∗ -2.039∗∗∗ -2.467∗∗∗ -1.323∗∗

(0.736) (0.498) (0.694) (0.670)
act -1.722∗∗∗ -1.294∗∗∗ -1.335∗∗∗ -1.763∗∗∗

(0.163) (0.198) (0.191) (0.081)
. . .× 1(turn>12) -0.241 -0.565∗ -0.821∗∗∗ -0.515∗

(0.251) (0.300) (0.265) (0.287)
morelink × act 0.673∗∗∗ 0.058 0.327∗∗ -0.060

(0.181) (0.184) (0.160) (0.337)
. . .× 1(turn>12) -0.809∗ -0.150 -0.104 -0.363

(0.445) (0.295) (0.373) (0.321)
mpay 0.141∗∗∗ 0.127∗∗∗ 0.176∗∗∗ 0.082∗∗∗

(0.015) (0.016) (0.024) (0.015)
. . .× 1(turn>12) -0.104∗∗∗ -0.064∗ -0.114∗∗ -0.051

(0.033) (0.036) (0.051) (0.033)
mpay × morelink -0.096∗∗∗ -0.098∗∗∗ -0.139∗∗∗ -0.088∗∗∗

(0.023) (0.029) (0.032) (0.024)
. . .× 1(turn>12) 0.134∗∗ 0.090∗∗ 0.127∗∗ 0.082∗∗∗

(0.053) (0.043) (0.050) (0.031)
turn spline: before 6† 0.090∗∗

(0.043)
Constant -0.440∗∗ -0.279∗ -0.958∗∗∗ -0.053

(0.177) (0.153) (0.244) (0.235)

Observations 9600 9804 9714 9510
Pseudo R2 0.192 0.165 0.180 0.173

Notes: The table reports the coefficients for logistic regressions at the action level.
Each column reports coefficient estimates from a model that is estimated on the
set of observations that excludes those from the treatment described on its heading.
Standard errors are clustered at the session level in parentheses. ∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001
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Figure A.2: Out-of-sample logit prediction by treatment
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A.6 Cluster representation

With four clustering variables, individuals are captured by a point in a 4-dimensional

space. This makes it challenging to provide a visual representation of all the information.

We therefore retain the pairs of variables that discriminate best among clusters. Figure A.3

presents the two-dimensional projection of each individual for the following variable pairs:

(a) Turns 13+ in all treatments and Turns 7-12 in Treatments M; and (b) Turns 13+ in

all treatments and Turns 1-12 in Treatments N-UA-US. It includes information about the

clusters in the best fitting model, that is, VEI with four clusters. Individuals in different

clusters are represented with different shapes and colors: red squares (Cluster 1), green

triangles (Cluster 2), purple crosses (Cluster 3) and blue circles (Cluster 4). The ∗ symbol

represents the mean value of the cluster. The dashed lines capture the two eigenvalues

of the variance-covariance matrix of the cluster and give the variances along the principal

directions. Finally, the ellipses are the contours of the bivariate Normal distribution.
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Figure A.3: Cluster Analysis

The least myopic rational Cluster 4 (blue circles) has the smallest number of individu-

als and most distinct behavior, but is also the most heterogeneous. On the other extreme,

cluster 1 (red squares) has the highest levels of myopic rationality. Cluster 2 (green trian-

gles) is very homogeneous and departs from cluster 1 mostly in late turns. By contrast,

cluster 3 (purple crosses) is relatively heterogeneous and departs from cluster 1 mostly in

early turns. Overall, Figure A.3 provides evidence that our grouping method achieves a

reasonable degree of homogeneity within clusters and heterogeneity between clusters.
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B Instructions

Welcome. This is an experiment on individual decision making in groups, and you will be paid
for your participation in cash at the end of the experiment. The entire experiment will take place
through computer terminals, and all interactions between participants will take place through the
computers. You will remain anonymous to me and to all the other participants during the entire
experiment; the only person who will know your identity is the Lab Manager who is responsible
for paying you in the end. Moreover, it is important that you do not talk or in any way try to
communicate with other participants during the experiment.

We will start with a brief instruction period. During the instruction period, you will be given
a complete description of the experiment and will be shown how to use the computers. You must
take a quiz after the instruction period, so it is important that you listen carefully. If you have
any questions during the instruction period, raise your hand and your question will be answered so
everyone can hear. If any difficulties arise after the experiment has begun, raise your hand, and an
experimenter will come and assist you. Please note that you are not being deceived and you will
not be deceived: everything I tell you is true.

Your earnings during the experiment are denominated in tokens. Depending on your decisions,
you can earn more tokens or lose some tokens. At the end of the experiment, we will count the
number of tokens you have earned in all of the matches and you will receive $1.00 for every 4 tokens.
You will be paid this amount plus the show-up fee of $5. Different participants may earn different
amounts. Everyone will be paid in private and you are under no obligation to tell others how much
you earned.

The experiment will consist of 8 matches. In each match, you will be put in a group with 5
other participants in the experiment. Since there are 12 participants in today’s session, there will
be 2 groups in each match. You are not told the identity of the participants in your group. Your
payoff in each match depends only on your decisions, the decisions of the other 5 participants in
your group and on chance. What happens in the other group has no effect on your payoff and vice
versa. Your decisions are not revealed to participants in the other group.

We will now explain how each match proceeds. At the beginning of the match, the computer
randomly assigns each of you to a group consisting of 6 participants. Next, the computer randomly
assigns with equal probability a role to each of the participants as “Subject 1”, “Subject 2” and so
on up to “Subject 6”. Then, the match begins.

Each match consists of several turns. At the beginning of each turn, the computer randomly
pairs all subjects within each group with one another. We shall call the subject that you are paired
with at each turn as your “Current Partner”. Once everyone receives a Current Partner, a turn
begins.
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At the beginning of each turn, you will see a screen similar to that shown here. The top panel
provides the information and interface that you will use to interact with other subjects within your
group. Meanwhile, the bottom panel lists your payoff history throughout the experiment. Payoff
information in each match, including the practice matches, is recorded here.
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This is the top panel. On the top-left is your role in this match. In this example, you are
Subject 1. The computer also informs you of your Current Partner at each turn. In this turn, your
Current Partner is Subject 2.

In the middle of the left panel, you will see a network representation of the connections between
all subjects in your group. Other subjects in your group are represented by nodes with their role
ID numbers. Meanwhile, you are always represented by the center node labeled “YOU”. In each
turn, the node for your Current Partner is colored YELLOW unlike the rest of the subjects. From
the color, you can see here that your Current Partner is Subject 2.

The lines connecting the nodes represent the links between subjects in your group. Everyone
in your group sees the same sets of links. In this example, you have direct links to Subjects 5 and
6. Through Subject 6, your are also indirectly connected with Subject 4. Subjects who are either
directly or indirectly connected belong in the same “Set”. In this example, there are two sets. The
first consists of You, Subjects 4, 5, and 6. The second set consists of Subjects 2 and 3.

At each turn, the joint actions of you and your current partner affect how the two of you are
linked. You take actions by clicking one of the action buttons below the network representation.
Through your actions, you can either propose a link, remove a link, or maintain how you are
connected with your partner.

In this first example, since you are not linked to Subject 2, only three actions are available:
“Propose”, “Pass Turn”, and “Network OK”. The “Remove” button is not active. Clicking “Pro-
pose” lets the computer know that you would like to propose a link with your Current Partner. If
your partner does the same, the computer will create a link between you and your partner. Other-
wise, no link will be created. In other words, a link is created if and only if BOTH partners propose
a link to each other.

If you don't want to link with your Current Partner, you can either click “Pass Turn” or
“Network OK”. In either case, a link will not be created. However, notice the difference between
the two actions. When you pass a turn, you tell the computer that you want to keep the way you
are linked with your current partner in this turn. However, you may still want to change how you
are linked with some of the other subjects. So, your buttons will remain active in the next turn

Meanwhile, if you choose “Network OK”, you tell the computer that as long as the network
doesn't change, you are happy with the way you are linked with everyone in your group. Therefore,
if you click “Network OK”, you won't need to take further actions until the network changes. Your
buttons will therefore be inactive. However, these buttons will immediately become active once the
decisions of other pairs either break or make a link. If all active subjects choose “Network OK” in
the same turn, then the match ends.

The turn ends once everyone in your group has taken an action. The computer then begins a
new turn, and you will be randomly assigned a new Current Partner. Please note that since pairs
are selected randomly, you may be paired with the same partner in consecutive turns.
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This figure illustrates a new turn in which you are paired with Subject 6. Now, since you are
already directly linked with this subject, the three actions available to you are: “Remove”, “Pass
Turn” and “Network OK”. The “Propose” button is deactivated in this turn.

Your link with Subject 6 will remain intact only if BOTH you and Subject 6 don't want to
remove it. If at least one subject in the pair wants to remove it, your direct link with your Current
Partner will be broken at the end of the the turn. Obviously, the link will also be broken if both
subjects in a pair choose to remove it.

In each match, the computer will continue to generate new turns for at least 12 turns unless all
subjects choose “Network OK”. However, if a match does not end after 12 turns, the match enters
the random-end stage. In the random-end stage, at each turn, the computer randomly decides
whether it will end the match or generate a new turn. Each time, there is a 20% probability
that it will decide to end the match. On average, this implies about 5 additional turns in each
match. The number of remaining turns before this random-end stage is displayed above the network
representation.

The network representation updates links that are made and broken in real time. You can
see changes to the network immediately after each pair makes their decisions within each turn.
Similarly, you can also keep track of changes within each turn through the “Status” indicator on
the lower right panel. This status indicator resets at each new turn.

We will next discuss about the payoff. Your payoff depends on the size of your set and the
number of direct links at the end of the match. Your set size, which is the number of subjects who
are either directly or indirectly connected to you, determines your revenue. Meanwhile, your cost
is determined by the number of direct links you have.

The right panel provides you with all of the information necessary to calculate your payoff.
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The table on the left gives you the revenue schedule for different set sizes. Above it, you can see
the list of subjects in your set. In this example, your set consists of You and Subjects 4, 5, and 6.
Therefore, as part of a set of size 4, your revenue is 35.

Next to the revenue table is the cost schedule for different numbers of direct links. Each direct
link incurs a constant cost. In this particular example, the cost for each link is 10 and, therefore,
the total cost is 10 times the number of subjects with whom you are directly linked. Above that
table, you can see that you are directly linked to Subjects 5 and 6. Since you have two direct links,
the current total cost is 20 tokens.

Your current revenue and cost at any stage of the game are highlighted in YELLOW. They
are updated in real time as the actions of subjects make and break links within each turn. The
rightmost box entitled “Current Payoff” calculates your payoff at each stage of the game. The
current payoff is simply the revenue minus cost, which in this case is 15. This payoff information is
also updated in real time. Note that the revenue and cost tables may change from match to match.

This figure illustrates what you will see at the end of a match. Below the status indicator, you
will see your payoff for this match. At the end of the match, please click “Continue to the Next
Match”. In each new match, you will be randomly assigned to a new group. A new match will
begin only after all groups have completed their matches. This continues for 8 matches, after which
the experiment ends.

At the end of the final match in the experiment, you will see the following screen.
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This final screen tells you the total payoff that you will receive for this experiment. When you
see this screen, don't click OK until you have written down your total payoff on the payoff sheet
provided. After you have written down your total payoff, click OK to conclude the session. (*)

The following slides summarize the rules of the experiment:
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We will now begin the Practice session and go through two practice matches to familiarize you
with the computer interface and the procedures. During these practice matches, please do not hit
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any keys until you are asked to. Remember, you are not paid for these matches. At the end of the
practice matches you will have to answer some review questions.

Throughout the session, pay attention to the network representation display and status indica-
tors. Also, notice the movements of the yellow highlights on your Revenue and Cost tables, as well
as updates to your Current Payoff.

[START GAME]

You have just received a new turn. First, pay attention to your role. If you are Subject 1, 2, or 3,
please click “Propose”. For Subject 1, 2, or 3, notice a link has just been created between you and
your partner if your partner is also Subject 1, 2 or 3.

Now, if you are Subject 4, 5, or 6, please click the “Pass Turn” button. Notice here that a link
is created if and only if BOTH partners propose a link. If only one partner proposes a link, no link
is created.

You have moved to a new turn. We will now see how the “Network OK” action works. If you
are either Subject 5 or 6, please click “Network OK”. For the rest of the group, please click “Pass
Turn”.

You have moved to a new turn. For Subjects 5 or 6, since the network has not changed after
you clicked “Network OK”, all of your buttons are now inactive. Notice that they will become
active following a change in the network.

For others, please check your Current Partner. If your partner is not Subject 5 or 6, click the
“Remove” button if it's active or “Propose” otherwise. For Subjects 5 and 6, notice how a change
in the network activates your buttons.

If you are not Subject 5 or 6 and your buttons are still active, please click “Pass Turn”. If you
are Subject 5 or 6 and your buttons are active, please click “Pass Turn”. Notice here that if your
buttons are inactive due to a “Network OK” action in a previous turn, a change in the network will
immediately activate your buttons. In the following, we will do the same exercise for Subjects 1 to
4.

You have moved to a new turn. If you are Subject 3 or 4, please click “Network OK”. For the
rest of the group, please click “Pass Turn”.

You have moved to a new turn. Subjects 3 and 4, notice that your buttons are inactive. If the
network changes in this turn, your buttons will become activated.

For all others, check your Current Partner. If your partner is not Subject 3 or 4, click “Remove”
if it's active or click “Propose” otherwise. If you are not Subject 3 or 4 and your buttons are still
active, click “Pass Turn”. Now, if you are Subject 3 or 4, please click “Pass Turn”.

You have moved to a new turn. If you are either Subject number 1 or 2, please click “Network
OK”. For the rest, please click “Pass Turn”.

You have moved to a new turn. For Subject 1 or 2, your buttons are now inactive. For all
others, if your Current Partner is not Subject 1 or 2, click the “Remove” button if it's active, or
click “Propose” otherwise. For everyone else who has not taken an action, please click “Pass Turn”.
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You have moved to a new turn. Notice from the message above the network display that this
is the last turn before the random-end stage. During the paid match, you will have 12 turns before
entering this stage. If the match has not ended after 12 turns, the computer will randomly decide
the end of the match.

We will now deliberately end the match. If your buttons are active, please click the “Network
OK” button. This ends the first practice match. The bottom part of your screen contains a table
summarizing the results for all matches you have participated in. This is called the history screen.
It will be filled out as the experiment proceeds. Now click “Continue to the Next Match”. We will
now begin with the second practice match.

[NEXT MATCH]

You are in a new match. Note here that the revenue and cost tables have changed as they may
during the real matches. We'll now examine the behavior of the “Remove” action.

If you are either Subject 2, 4, or 6, please click “Remove”. For Subjects 1, 3, and 5, please click
“Pass Turn”. Hence, notice that a link is broken if at least one of the partners chooses to remove
it.

You have moved to a new turn. Next, we'll see what will happen if the network changes within
the turn in which you click “Network OK”. If you are Subject number 1, 3, or 5, please click the
“Network OK” button. For all others, please click your “Remove” button.

You have moved to a new turn. For Subjects 1, 3, or 5 notice that if in the previous turn the
network changed after you clicked “Network OK”, your action buttons are active in this turn. If
the network did not change after you clicked “Network OK”, your buttons remain inactive. Now,
if you are either Subject 2, 4, or 6, click “Network OK”. For all others, if you haven't taken an
action in this turn, please click the “Remove” button if it's active, or “Propose” otherwise.

You have moved to a new turn. Similarly for Subjects 2, 4, and 6, notice that if in the previous
turn the network changed after you clicked “Network OK”, your buttons are now active. If the
network did not change after you clicked “Network OK”, your buttons are still inactive. If the
network changes in the same turn and after you choose “Network OK”, your buttons stay active in
the following turn.

We will now end the match. If your buttons are active, please click “Network OK”. This ends
the second practice match.

*** END OF PRACTICE SESSION ***

The practice matches are over. Please click “Continue to the next match” and complete the
quiz. It has 8 questions in two pages. You will move to the next page once everyone in your group
has completed the questions in that page correctly. On your table, you will find the screenshots
that you will need to answer these questions. Raise your hand if you have any questions.
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[WAIT for everyone to finish the quiz]

Are there any questions before we begin with the paid session? We will now begin with the 8
paid matches. Please pull out your dividers. If there are any problems or questions from this point
on, raise your hand and an experimenter will come and assist you.

[START MATCH 1]

[After MATCH 8, read:]

This was the last match of the experiment. Now, please write down your ID on the payment
sheet. Your ID is located on top of your physical monitor and it began with CASSEL. At this point,
if you haven't clicked “Continue to the next match”, please do so. Your total payoff is displayed
on your screen. Please record this payoff in the earned column of your sheet and sign it. Once you
have written it down, please click OK.

Your Total Payoff will be this amount rounded up to the nearest dollar plus the show-up fee of
$5. We will pay each of you in private in the next room. Remember you are under no obligation
to reveal your earnings to the other subjects.

If you are done, please line up behind the yellow line until the lab manager calls you to be paid.
Do not converse with the other subjects or use your cell phone. Thank you for your cooperation.
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