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Abstract

We investigate a common value bilateral bargaining model with two sided
private information and no aggregate uncertainty. A seller owns an asset
whose common valuation is a deterministic function of the two traders�pri-
vate signals. We �rst establish a no-trade theorem for this environment, and
proceed to study the e¤ect of the asset valuation structure and the trading
mechanism on extent to which asymmetric information induces individuals
to engage in mutually unpro�table exchange. A laboratory experiment is
conducted, where trade is found to occur between 19% and 35% of the time,
and this depends in systematic ways on both the asset valuation function
and the trading mechanism. Both buyers and sellers adapt their strategy to
changes in the asset valuation function and to changes in the trading mech-
anism in clearly identi�able ways. An equilibrium model with naïve belief
formation accounts for some of the behavioral �ndings, but open questions
remain.
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1 Introduction

Understanding the e¤ects of private information on pricing and volume of
trade is central to the study of markets, especially markets for risky as-
sets. In the present paper, we consider two simple trading mechanisms and
three di¤erent kinds of assets in the context of a simple trading model. We
investigate whether asymmetric information in this environment induces in-
dividuals to engage in exchange where trade is not mutually pro�table. We
�nd that it does, and study how the trading mechanisms and asset types
a¤ect the likelihood and terms of trade.

To study this problem, we analyze a two-person bargaining game with
two-sided private information and no aggregate uncertainty. One individual
(the seller) is endowed with one unit of an asset. Another individual (the
buyer) can acquire it if both can agree on a price for the transaction. We
consider a class of assets with a pure common value and each individual has
a private signal about this value. The value of the asset is a deterministic
function of the two signals, so if agents pool their information there is no
residual uncertainty about the asset value. As a result, there cannot be
trade for insurance or risk-sharing motives regardless of the risk attitudes
of buyer and seller. Furthermore the information structure and the prior
distribution of the states is common knowledge so there is no possibility
of trade based on heterogeneous priors. The logic is similar to standard
no-trade theorems: both agents cannot bene�t from a trade, so accepting
the other agent�s terms implies that one�s end of the deal cannot be ex-post
favorable. However the actual structure of the model is somewhat di¤erent
and does not allow us to directly apply existing results. Our �rst result is a
no-trade theorem for this class of environment.

We then proceed to study the e¤ect of the asset valuation structure and
the trading mechanism on extent to which asymmetric information induces
individuals to engage in mutually unpro�table exchange. A laboratory ex-
periment is conducted, where trade is found to occur between 19% and 35%
of the time, and this depends in systematic ways on both the asset valuation
function and the trading mechanism.

Speci�cally, private signals are drawn independently from a commonly
known distribution on a real interval, and the experiment considers three
di¤erent valuation structures for how the common value is related to the un-
derlying signals: the average of the signals; the minimum of the signals; and
the maximum of the signals (hence forth referred to as the "ave", "min"
and "max" asset values, respectively). Second, we compare exchange be-
havior under two trading mechanisms: a two stage mechanism where the
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seller sets a take-it-or-leave-it price which the buyer can accept or reject;
and a simultaneous move double auction, where trade occurs at the seller�s
o¤er whenever the buyer�s bid weakly exceeds it (henceforth referred to as
the "price" and "auction" mechanisms). Hence, both the asset value struc-
ture and the mechanism for sharing this value between buyer and seller are
varied in the experiment. To the extent that trade is observed in the exper-
iment, this design provides an opportunity to identify possible explanations
for observed non-equilibrium behavior, because the asset value a¤ects the
Nash equilibrium prices, bids, and o¤ers (although not the outcome, which
is always no-trade). By contrast, both trading mechanisms are strategically
equivalent for the seller, in the sense that he should set identical prices in
either case. Thus, theoretically we should see di¤erences in behavior across
asset types, but no di¤erences across trading mechanisms.

Our �rst set of results relates to �ndings that are common to the di¤er-
ent treatments. Contrary to the theoretical prediction, we always observe
substantial trade, with probabilities ranging from 32% to 58% of the time
when the buyer�s signal exceeds the seller�s signal depending on treatments.1

Also, there is little evidence of learning by either buyers or sellers in this
game, despite a signi�cant number of rounds being played (20) and with
feedback and experience in both roles, buyer and seller. Finally, under both
trading mechanisms, sellers have net losses on average in the ave and max
treatments and net gains in the min treatment. The combination of no
learning and exploitation of subjects in one role by subjects in the other is
surprising since individuals gain experience in both roles.

Our second set of results investigates more deeply the di¤erences in be-
havior across treatments. Strategies of buyers and sellers change across the
asset valuation function. In particular, seller prices and buyer bids both
increase as we move from min to ave and from ave to max. Therefore, even
though the exact numerical price levels are inconsistent with the theory and
lead to trade, the qualitative changes in response to changes in asset val-
ues are quite intuitive and consistent with theory. Surprisingly however,
behavior also changes across mechanisms in signi�cant ways. In particular,
buyers submit bids in the auction mechanism which are, on average, lower
than the maximum o¤er prices they accept in the price mechanism. Theo-
retically there should be no di¤erence. At the same time, prices posted by
sellers are more responsive to their signal in the auction than in the price
mechanism. In addition to these changes in pricing behavior, the extent
to which behavior is inconsistent with Nash equilibrium has huge variation

1Not surprisingly, trade is rare when the seller�s signal exceeds the buyer�s signal.
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across the three asset value functions, the two exchange mechanisms, and
the trader roles (buyer/seller).

Finally, as an initial attempt to understand these �ndings, we consider
an alternative model, the "cursed equilibrium" (Eyster and Rabin, 2005),
where traders incorrectly believe that there is no relationship between the
action and the private information of their rival. Traders with such erroneous
beliefs are vulnerable to accepting or o¤ering unfavorable terms of trade. We
solve analytically the outcome of the game under the price mechanism and
for the three value functions when all traders su¤er this belief fallacy. We
show that the buyers� acceptance decision, the sellers� price function and
the trade frequencies predicted by the cursed equilibrium model all match
up reasonably well with the data.

Related literature: Theory. Milgrom and Stokey (1982) and Tirole
(1982) establish that, in equilibrium, rational individuals will not trade for
purely informational reasons. More speci�cally, in a market context, if fully
rational agents have common prior beliefs and the existing asset allocation
is Pareto optimal (say, as the result of previous trading), then new private
information to some or all agents in the economy will not induce trade. The
logic is simple. Traders who receive private information have the marginal
valuation for their asset allocation modi�ed. However, without insurance
or transaction motives for trading, every agent realizes that a transaction
bene�cial for someone must necessarily be detrimental for someone else.
Thus, the acceptance of the terms of a trade is evidence that the deal must
be unfavorable.2

Our framework is also related to the literature on bargaining with private
information. In a private value setting with two-sided private information,
it has been shown that trade occurs when the seller�s valuation is su¢ ciently
lower than the buyer�s valuation. This means, in particular, that full e¢ -
ciency cannot be achieved and that asymmetric information prevents the
realization of some pro�table trades.3 In a common value setting with se-

2This "no-trade theorem" has been extended in a number of directions. For exam-
ple, Morris (1994) identi�es conditions under which no-trade occurs even if individuals
have heterogeneous prior beliefs. Blume et al. (2006) show that the no-trade result ap-
plies to competitive markets if and only if markets are complete. Serrano-Padial (2007)
demonstrates that it holds under a class of bilateral trading mechanisms.

3See for example Chatterjee and Samuelson (1983) in the context of a double auc-
tion and Myerson and Satterthwaite (1983) in a generalized bargaining game. Cramton
et al. (1987) show that initial ownership is crucial to determine whether e¢ ciency can
be achieved. Radner and Schotter (1989) study in the laboratory the Chatterjee and
Samuelson model of private values bargaining.
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quential o¤ers, Evans (1989) and Vincent (1989) show that one-sided private
information also leads to ine¢ ciently low trading. Instead, our experimen-
tal results imply the opposite observation for actual trading behavior: the
introduction of asymmetric information leads to trade in contexts where we
should observe none.

Related literature: Experiments. Constant sum bargaining games
with two-sided private information, of which bargaining with common val-
ues is a special case, have rarely been studied in the laboratory. Exceptions
are the compromise game (Carrillo and Palfrey, 2009), and the betting game
(Sonsino et al. (2001), Sovic (2004), Rogers et al. (2009)). In these two ex-
perimental settings, subjects make binary choices. Both games exhibit the
analogue of excessive trading (compromise and betting in their terminol-
ogy). However, the sparseness of the strategy spaces in those settings (2� 2
games) does not map easily into standard trading problems where prices
play an important role, and are not rich enough models to explore system-
atic e¤ects of di¤erent asset valuation structures and trading mechanisms.4

In the richer bargaining environment studied in this paper, one can not only
address that �rst question of whether subjects set the prices predicted by
the theory, but can also identify in greater detail how much departure from
the theory there is, how this depends on the asset valuation structure and
the trading mechanism, and its di¤erent impact on buyer and seller pro�ts.5

The trader incentives in our study share some similarities with the win-
ner�s curse problem for bidders in common value auctions (reviewed in Kagel
and Levin, 2002) and the lemons problem of adverse selection markets (Ak-
erlof 1970, Samuelson and Bazerman 1985). Under some conditions, players
do not fully take account of the dependence of the actions of other players
in the game on their private information, although these distortions often
diminish with experience both through selection and learning (Kagel and
Levin, 2002). Our two-sided asymmetric information setting delivers four
novel implications related to these other problems. First, it shows that the

4The simplicity of the betting games also has a weakness in that the equilibrium predict
"inaction" (no bets) independently of the subject�s information, and hence equilibrium
payo¤s are also independent the private information. Thus, boredom could explain the
bulk of the �ndings. This does not apply to our game where (i) subjects must select prices;
(ii) the Nash equilibrium action depends on the subject�s signal; (iii) equilibrium payo¤s
for the seller depends on both types; and (iv) subjects can earn substantial pro�ts if they
choose prices optimally.

5Very recently, a working paper has been circulated (Angrisani et al., 2009) reporting
the results of a trading experiment that also uses our ave-auction treatment, but with
aggregate uncertainty.
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adverse selection problem does not depend on subjects being at a disad-
vantaged, fully uninformed position relative to a fully informed seller, as in
the lemons problem. Second, with this double asymmetry, learning is lim-
ited even though subjects gain substantial experience in both roles. Third,
the trading mechanism a¤ects the extent to which subjects fall prey to the
adverse selection problem, and it a¤ects sellers behavior in fundamentally
di¤erent ways from buyers. Fourth, the asset valuation structure, i.e., the
mapping from signal pro�le to asset value, has strong and signi�cant e¤ects
on non-equilibrium behavior; and as with the trading mechanism, the asset
valuation structure a¤ects buyers in di¤erent ways than sellers.

2 The model

The trading game can be formalized as follows. An asset is to be divided
among two agents, 1 and 2. Agent 1, the seller, possesses the asset. Agent 2,
the buyer, can acquire it if they mutually agree on a price. The asset has a
common value to both agents, and each has a signal, denoted by s and b for
the seller and buyer, respectively. The common value v(s; b) is a commonly
known and deterministic function of the signals, s 2 S = [smin; smax] � <
and b 2 B = [bmin; bmax] � <. There are many possible bargaining mecha-
nisms that might apply in these environments. The simplest trade mech-
anism, and the one that we consider here, is one in which the seller sets
a take-it-or-leave-it price, which is accepted or rejected by the buyer. A
strategy for a seller is a measurable pricing function P : S ! < and a strat-
egy for the buyer is a measurable acceptance function A : < ! f0; 1g where
1 denotes "accept" and 0 denotes "decline". A natural alternative, which
we also consider, is a seller-price double-auction, where seller and buyer
simultaneously quote price and bid, and the transaction is executed at the
seller�s price if and only if the bid weakly exceeds the price. Here we analyze
only the take-it-or-leave-it pricing mechanism, but the results of this section
apply equally to the seller-price double-auction mechanism.

Denoting the seller�s price by p, the payo¤s in case of trade are given by:

�1(s; b; p; 1) = p

�2(s; b; p; 1) = v(s; b)� p

The payo¤s in case of no trade are given by:

�1(s; b; p; 0) = v(s; b)

�2(s; b; p; 0) = 0
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In these mechanisms the total surplus v(s; b) is �xed but the splitting
rule (trading price) is endogenously determined. We assume s and b are
private information for seller and buyer, respectively. More precisely, s 2 S
and b 2 B with commonly known conditional distribution functions, Fs(s j b)
and Fb(b j s), possibly di¤erent and possibly correlated. We assume strictly
positive continuous densities fs(s j b) and fb(b j s) for all s and b. We also
restrict attention to monotone value functions, i.e., for every signal pair
(s; b), @v(s; b)=@s � 0 for all b and @v(s; b)=@b � 0 for all s. Last, we assume
that the utility of the seller, u1(�1), and the utility of the buyer, u2(�2), are
strictly increasing in their own payo¤s, �1 and �2, that is, u01(�1) > 0 and
u02(�2) > 0. These utility functions are not necessarily the same. Moreover,
we allow for risk-averse and risk-loving utilities (u001 ? 0 and u002 ? 0).

This class of environments does not satisfy the conditions for no-trade
described in Milgrom and Stokey (1982). In particular, the initial allocation
is not Pareto optimal if the seller is more risk-averse than the buyer for
all relevant levels of wealth. Therefore, we cannot apply existing no-trade
theorems. Nevertheless, a no trade property can be proved, summarized in
the proposition below.

Proposition. In equilibrium, there is no trade except when both buyers
and sellers are indi¤erent between trading and not. There is at most one
price where trade can occur: p� = v(smin; bmax). Trade can occur at a pair
(s; b) only if v(s; b) = v(smin; bmax).

Proof. To conserve notation, we consider only pure strategies in this proof,
but the logic is identical for mixed strategies. Suppose there exists a price
p, a subset Sp j S and a subset Bp j B such that for all s 2 Sp agent 1
o¤ers the good at price p and for all b 2 Bp agent 2 accepts to trade at that
price. Let s = max s2Sp and b = min b2Bp . Agent 2 accepting p implies that:Z

s2Sp
u2(v(s; b)� p)dFs(s j b; s 2 Sp) � u2(0) 8 b 2 Bp

)
u2(v(s; b)� p) � u2(0)

)
p � v(s; b)
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Similarly, agent 1 o¤ering p implies that:

u1(p) �
Z
b2Bp

u1(v(s; b))dFb(b j s; b 2 Bp) 8 s 2 Sp
)

u1(p) � u1(v(s; b))

)
p � v(s; b)

Hence p = v(s; b). But this implies that u1(v(s; b)) �
R
b2Bp u1(v(s; b))dFb(b j s; b 2

Bp) 8 s 2 Sp and
R
s2Spu2(v(s; b)� v(s; b))dFs(s j b; s 2 Sp) � u2(0) 8 b 2 Bp.

Therefore, p = v(s; b) = v(s; b) 8 s 2 Sp and 8 b 2 Bp. Moreover, p was cho-
sen arbitrarily, which implies that in any equilibrium, trade occurs only when
both buyer and seller are indi¤erent. Thus, for all (s; b; p) combinations, it
must be that either there is no trade or p = v(s; b). Because of monotonic-
ity of v, this also implies that p = v(s; b) for all s < s, and p = v(s; b)
for all b > b. Otherwise, if p > v(s; b) for some s < s, such a seller could
o¤er p and make a pro�t, or if p < v(s; b) for some b > b, such a buyer
could accept the trade at p and make a pro�t. Therefore, v(smin; b) = p and
v(s; bmax) = p where smin and bmax are the lower and upper bounds of the
support of seller and buyer types, respectively. However, by monotonicity,
we have p = v(smin; b) � v(smin; bmax) and p = v(s; bmax) � v(smin; bmax)
hence p = v(smin; bmax). Note that if, at (smin; bmax), either @v(s; b)=@s > 0
or @v(s; b)=@b > 0, then the set of trading pairs in any equilibrium has zero
measure. Also note, that for every equilibrium with trade, there is a payo¤-
equivalent equilibrium with the same seller pricing strategy where no type
of buyer ever accepts. A similar proof extends this result to the seller-price
double-auction. �

The intuition is straightforward, and is most easily described for the
case where v is strictly monotone. In this case, trade can only occur in
equilibrium between the least optimistic seller type, smin; and the most
optimistic buyer type, bmax, at a price equal to v(smin; bmax). There can of
course be many equilibria, as there are many prices the seller can set that
no buyer will accept. One example of such an equilibrium is where the seller
uses the pricing rule:

P (s) =

(
v(smin; bmax) if s = smin

v(smax; bmax) otherwise
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Along the equilibrium path, the buyer can either accept if and only
if he is type bmax and the price is less than or equal to v(smin; bmax), or
reject at either price. Obviously there may be many sequential equilibria of
this complicated signaling game, but all share this basic property. Notice
that, at the stage where individuals can trade, each agent has incomplete
information, but there is no residual uncertainty about the value of the asset
(formally, v(�) is a deterministic function of s and b). Therefore, trading
for insurance or risk-sharing motives is not possible, despite the possible
di¤erences in the agents�risk-tolerance. Because of their di¤erent private
information, agents will hold di¤erent interim beliefs about the value of the
asset. This could, in principle, generate trade. However any deal bene�cial
for one player must necessarily be harmful for the other. Because trade only
occurs under mutual agreement, this is enough to break any deal except for
the most extreme types, who are indi¤erent between trade and no trade.

The simplicity of the argument makes it also very robust: as long as we
keep the deterministic and common value nature of the asset, extending the
game in other dimensions will not change the no-trade outcome. In partic-
ular, allowing counter-o¤ers, divisibility of the asset or more sophisticated
trading mechanisms will not induce agents to trade. By contrast, it is also
easy to see why the absence of residual uncertainty on the asset�s value is
important. Indeed, if this was not the case, incentives to trade for insurance
or risk-sharing motives may be present after the revelation of information
and could outweigh the adverse selection problem.6

3 The experiment

3.1 Implementation of the game in the laboratory

We specialize the environment for the laboratory in the following ways.
First, the private information signals, s and b, are independent draws from
identical, uniform distributions. For the asset value function, we obtain
data for three cases: average of signals (v(s; b) = s+b

2 ), minimum of signals
(v(s; b) = minfs; bg), and maximum of signals (v(s; b) = maxfs; bg). For the
trading mechanism, we obtain data for two cases: a take-it-or-leave-it price
and a seller-price double-auction. When there is no trade, the payo¤ of the
buyer is 0 and the payo¤ of the seller is v(s; b) under either mechanism. In
the experiment, we impose that u is linear, so when there is trade, the payo¤

6To grasp the intuition, imagine the limit situation where s and b provides almost no
information about the value of the asset. The adverse selection e¤ect would be minimal
so if the seller were more risk-averse than the buyer, they would both gain from trading.
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of the buyer is the value of the asset minus the price paid, v(s; b) � p, and
the payo¤ of the seller is the price p.

Under both mechanisms the action of the buyer determines only whether
there is trade, so seller behavior should be the same in equilibrium in both
mechanisms. Furthermore, the buyer bidding behavior in the auction mech-
anism should be isomorphic to their acceptance strategy in the price mech-
anism. Hence, the only real di¤erence between the two mechanisms lies in
the timing: sequential (price mechanism) vs. simultaneous (auction mecha-
nism).

3.2 Experimental design and procedures

We conducted 12 sessions with a total of 146 subjects. The �rst 7 ses-
sions were conducted at The Princeton Laboratory for Experimental Social
Science (PLESS) in 2006 and 2007. Subjects were registered Princeton Uni-
versity students who were recruited by email solicitation. To expand the
sample size, we conducted 5 more sessions at the California Social Science
Experimental Laboratory (CASSEL) in 2009 with UCLA students also re-
cruited by email solicitation. The protocols were identical in the Princeton
and UCLA sessions. All interaction between subjects was computerized,
using the open source software package, Multistage Games.7 No subject
participated in more than one session. In each session, subjects made de-
cisions over 20 rounds. Each subject played exactly one game with one
opponent in each round, with random rematching after each round.

At the beginning of each round, each subject was randomly assigned
a role as either seller or buyer, and assigned a new signal, s or b. Signals
were integer numbers drawn independently with replacement from a uniform
distribution over [0; 100]. Each subject observed his own signal, but did not
observe the opponent�s signal. The distribution was common knowledge.
The common value was computed as a deterministic function of the two
signals, using either the average, minimum, or maximum. The value function
was held constant within a session.8

In the price variant, the seller o¤ered the asset for a price, p, which
was limited to integer numbers in the range of possible values of the asset,
[0; 100]. The buyer then decided whether to accept or reject the o¤er, and

7Documentation and instructions for downloading the software can be found at
http://multistage.ssel.caltech.edu.

8The average treatments were framed as the sum of the two signals, rather than the
average, to make the instructions simpler. This only results in a rescaling of strategies
and payo¤s.
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payo¤s for that round accrued accordingly. In the auction variant, buyer
and seller simultaneously quoted bid and ask prices also limited to integer
numbers in the range of possible values of the good. Trade occurred at the
seller�s price if and only if the bid weakly exceeded the ask price. In either
case, players learned at the end of each round the signal and decision of
their opponent. Finally, subject computer screens included a table with the
history of behavior, signals, and outcomes in previous rounds.

At the beginning of each session, instructions were read by the experi-
menter standing on a stage in the front of the experiment room, which fully
explained the rules, information structure, and computer interface.9 Af-
ter the instructions were �nished, two practice rounds were conducted, for
which subjects received no payment. After the practice rounds, there was a
interactive computerized comprehension quiz that all subjects had to answer
correctly before proceeding to the paid rounds. The subjects then partici-
pated in 20 paid rounds, with opponents, roles (seller or buyer), and signals
randomly reassigned at the beginning of each round. The common value
function and trading mechanism were held constant throughout all rounds
of a session, and two sessions were conducted for each (Value, Mechanism)
pair. Subjects were paid the sum of their earnings over the 20 paid rounds,
in cash, in private, immediately following the session. Table 1 displays the
details of the 12 sessions.

Session # subjects # Rounds Location Asset Value Mechanism

1 12 20 PLESS ave price
2 14 20 PLESS ave price
3 12 20 PLESS min price
4 12 20 PLESS max price
5 12 20 PLESS ave auction
6 12 20 PLESS min auction
7 12 20 PLESS max auction
8 12 20 CASSEL min price
9 12 20 CASSEL max price
10 12 20 CASSEL ave auction
11 12 20 CASSEL min auction
12 12 20 CASSEL max auction

Table 1. Session details.
9A sample copy of the instructions is attached as an appendix.
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4 Results

4.1 Aggregate behavior and payo¤s

The �rst cut at the data consists of comparing the prices, frequency of
trade and realized gains and losses of buyers and sellers in the di¤erent
treatments, without conditioning on the actual draws of s and b. Table 2
shows average choices for the ave, min and max value functions under the
price and auction mechanisms. In all tables, standard errors (clustered at
the individual level when appropriate) are reported in parenthesis. Also,
except where noted, we use standard t-test and use asterisks to identify
estimates that are signi�cantly di¤erent from 0 at the 10% level (*), 5%
level (**), and 1% level (***).

Asset Value ave ave min min max max
Mechanism price auction price auction price auction
# observations [260] [240] [240] [240] [240] [240]

Average seller price 61.5 (2.82) 58.3 (3.04) 51.6 (2.17) 56.4 (2.33) 82.3 (2.11) 76.4 (2.18)
Average buyer bid � 45.3 (2.11) � 28.5 (2.84) � 51.4 (3.15)
Frequency of trade (%) 31.9 35.0 22.5 18.8 23.8 22.1
Seller gain given trade -4.6��� (1.43) -2.3 (2.35) 1.1 (3.00) 5.6� (2.98) -5.2� (2.74) -9.4�� (3.40)
Seller gain -1.5��� (0.52) -0.8 (0.85) 0.2 (0.67) 1.0� (0.54) -1.2� (0.69) -2.1�� (0.80)
Gain if all traded 13.9 (2.82) 8.1 (2.51) 18.8 (2.18) 21.2 (1.99) 15.6 (2.70) 10.2 (2.48)

Table 2. Average choices and trade probabilities

Result 1 There is substantial trade in all treatments.

In approximately half of our observations, the buyer�s signal is below the
seller�s signal. These are situations with essentially no chance for trade even
with completely naïve behavior, implying a natural upper bound of 50% on
the amount of trade. Yet we observe trade between 18.8% to 35.0% of the
time, depending on the treatment. Since trade occurs around 10% of the
time when b < s, it implies trade probabilities of 32% to 58% when b > s
(see Table 4 below for details).

Result 2 Traders in the role of sellers lose money on average in the ave
and max treatments and gain money on average in the min treatments.

Sellers�o¤er prices would, on average, earn them non-negligible pro�ts if
buyer acceptance decisions were uncorrelated with buyer signals. However,
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since buyers condition their decision on their information, and are more
likely to accept when their signal is higher, sellers end up incurring net
losses in 4 out of the 6 treatments. As an immediate consequence, and
abstracting from endowment considerations, it is preferable in this game to
be a buyer under the ave and max value functions and a seller under the
min value function.10 The results for min and max are not surprising. In
the min treatment, a rational and cautious seller has at his disposal a simple
strategy to induce a boundedly rational buyer to trade and at the same time
guarantee no losses, by asking s. In the max treatment, the same is true for
the buyer, who can o¤er b.11 We call these, the �easy" cases to solve. In
fact, given the behavior of buyers and sellers these strategies would actually
generate positive pro�ts and, as we will see below, it is employed by some
subjects.

To evaluate whether subjects do as well as they can given the behavior
of their rival, we look at gains and losses as a function of the realized private
information. Figure 1 displays for the price (left column) and auction (right
column) treatments, the potential �positive or negative�net gain of sellers
(price minus value of the asset) as a function of the seller�s signal, where
each dot is one observation. It also shows whether the terms of the trade
were accepted and thus the net gains realized (dark circle) or not (light
triangle). (The analogous information from the buyer�s viewpoint is omitted
for brevity).

[ Figure 1 here ]

The �gures clearly illustrate the adverse selection e¤ect. Although the
expected gains would be positive if the behavior of buyers were uncorre-
lated with their information, they are generally negative in the ave and max
treatments and around zero in the min treatments once we condition on the
buyers�actual decisions, that is, when we look only at the dark circle dots.
More interestingly, the biggest losses occur when the signal of sellers are
high in the min treatment and low in the max treatment. Indeed, these are
the cases where the dispersion of prices is highest and therefore the selective
acceptance of buyers has the largest impact on payo¤s.

Result 3 Aggregate behavior di¤ers across asset value treatments: asking
prices and bids increase from min to ave and from ave to max.

10Since the seller is, by assumption, endowed with the good, his �nal payo¤ is greater
than that of the buyer if there is no trade (v(s; b) vs. 0). We de�ne pro�t in net terms.
11By contrast, the only way to ensure no losses for a seller in the max treatment and

for a buyer in the min treatment is to ask 100 and o¤er 0, respectively.
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The seller�s price and the buyer�s bid all increase from min to ave and
from ave to max, as expected. It is easy to see that the expected value
of the asset conditional on an agent�s signal also increases from min to
ave and from ave to max. This suggests that players exhibit some level
of rationality with respect to the asset value function. Note also that the
variance is important, mainly because choices are greatly a¤ected by signals.
The average di¤erences between bid and ask prices are signi�cantly higher
in the min and max treatments (27.9 and 25.0) than in the ave treatment
(13.0). It re�ects the greater di¢ culty for sellers to determine which price
to set in the max treatment (where the only equilibrium is 100) and for
buyers to determine which bid to make in the min treatment (where the
only equilibrium is 0). We call these, the �di¢ cult" cases to solve.

Result 4 Aggregate behavior is similar across mechanisms.

The frequency of trade in the auction mechanism is between 3.1% higher
(ave treatment) to 3.7% lower (min treatment) than in the price mechanism.
The di¤erences in prices set by sellers are small and lower prices do not nec-
essarily translate into greater losses. Moving from the price to the auction
mechanism slightly increases the gains of subjects playing the �simple" cases
(sellers in the min treatment and buyers in the max treatment) at the ex-
pense of subjects playing the �di¢ cult" cases (sellers in the max treatment
and buyers in the min treatment).

4.2 Aggregate behavior and payo¤s conditional on signals

4.2.1 Strategies of sellers

The picture presented so far is useful, but incomplete since it aggregates
across traders�private information. If traders condition their decisions on
their private information, then such an analysis has left out an important
component of behavior. Formally, a behavioral strategy for a seller, in
both mechanisms, is a mapping from their private signal to a probability
distribution over prices. We can summarize all the aggregate joint dis-
tribution of seller signals and prices graphically and compare them across
treatments. Figure 2 displays for each of the 6 treatments (ave-min-max
and price-auction variants) the sellers� asking price as a function of their
signal. Each dot in the graph is one observation. Figure 2 also identi�es
cases where the prices resulted in a trade.

[ Figure 2 here ]
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As a natural benchmark for studying seller behavior, we use the Nash
equilibrium price correspondence. That equilibrium di¤ers across value
treatments, but is the same for both mechanisms. The equilibrium price
correspondences are:8<:

pe(s) 2
�
s
2 + 50; 100

�
(ave)

pe(s) 2 [s; 100] (min)
pe(s) = 100 (max)

Note that equilibrium is characterized by a range of equilibrium prices for
the ave and min cases, and is a �xed constant pe = 100 in the max treatment.

Result 5 Seller pricing strategies are consistently below the Nash equilib-
rium.

Seller pricing behavior coincides with Nash equilibrium play rather in-
frequently, particularly in view of the wide range of Nash equilibrium prices
in the ave and min treatments. In those two cases, prices are in the Nash
equilibrium range 17% and 66% of the time, respectively. In the max case,
only 12% of the observed prices are at the Nash equilibrium (p = 100). All
other prices are too low. Pooling across the three value treatments, sellers
set prices below Nash equilibrium about 70% of the time. The lower enve-
lope of Nash strategies for the sellers are p = s

2 + 50, p = s, and p = 100 in
the ave, min, and max treatments, respectively. In equilibrium, these prices
should yield no net pro�t to the seller because they are too high to induce
buyers to trade. At the same time, they are high enough to guarantee a net
pro�t if a buyer (out of equilibrium) accepts. However, even zero or very low
pro�ts would be an improvement over the losses sellers are incurring in the
ave and max treatments from the lower prices they set in the experiment.

As a �nal bit of evidence about aggregate seller strategies, we estimated a
regression of seller prices as a function of seller signal as a rough test to look
for di¤erences in behavior across mechanisms. Theoretically there should
be no di¤erence. Coe¢ cients on the seller�s signal are highly positive and
highly signi�cant (p < .001), even in the max treatments where it should be
zero. (Table omitted for brevity). A one unit increase in s translates into a
.24 to .45 increase in price, depending on the treatment. Also, the response
is greater with the auction than with the price mechanism (lower intercept
and higher slope) except for the ave treatment where the coe¢ cients are not
signi�cantly di¤erent from each other. As a consequence prices are higher
in the auction treatment, especially so for high seller signals.

14



Result 6 Seller prices are increasing in their signal; they are also more
responsive to signals in the auction than in the price treatment.

The existence of these systematic di¤erences show that sellers make pric-
ing decisions di¤erently under the auction and price mechanisms, in spite
of the fact that equilibrium strategies are identical for the sellers in the two
mechanisms. This suggests that sellers have di¤erent expectations about
how buyers are behaving under the price and auction mechanisms. As we
report in the next subsection, this is indeed the case.

4.2.2 Strategies of buyers

We now turn to study the behavior of buyers. A behavioral strategy for a
buyer in the auction treatment is analogous to that of the seller. That is,
it is a mapping from buyer signal to a probability distribution over bids.
In the price treatment however, the strategy is quite di¤erent from that of
the seller. It is a mapping from the pair (buyer�s signal, seller�s price) to a
probability of accepting the terms of trade. We can graphically display the
empirical strategies of buyers and compare them across treatments.

The left column in Figure 3 displays the accept/reject (trade/no trade)
decision of buyers as a function of their signal and the seller�s asking price,
in all three price treatments. The right column displays the buyers�bid as
a function of their signal, in all three auction treatments. It also displays
whether the bid resulted in trade (dark circle) or not (light triangle). These
are obviously two di¤erent (and not readily comparable) pieces of informa-
tion.

[ Figure 3 here ]

As with the analysis of seller behavior, we use the Nash equilibrium as
the benchmark for studying buyer behavior. Unlike the seller equilibrium
strategies, buyer equilibrium strategies di¤er across the two mechanisms as
well as across value treatments. In fact, for the buyers their information
sets and action sets are di¤erent in the two mechanisms. For the price
mechanism, we summarize the equilibrium strategies in terms of Acceptance
Regions, Ae(b; p), for each value treatment that are consistent with Nash
equilibrium. The acceptance region speci�es the set of buyer signal - price
pairs at which a buyer accepts the price and trade occurs. For the auc-
tion treatment, we specify strategies in a similar way to sellers: for each
value treatment we specify the range of bids, Be(b) consistent with Nash
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equilibrium. The equilibrium price correspondences are:

Price :
Ae(b; p) =

�
(b; p) j p � b

2

	
(ave)

Ae(b; p) = f(b; p) j p = 0g (min)
Ae(b; p) = f(b; p) j p � bg (max)

Auction :
Be(b) 2

�
0; b2

�
(ave)

Be(b) = 0 (min)
Be(b) = [0; b] (max)

Note that equilibrium is characterized by a range of equilibrium bids (or ac-
ceptance regions) for the ave and max cases, and is a �xed constantBe(b) = 0
in the min treatment. This contrasts with the seller�s equilibrium strategies
which were a �xed constant in the max treatment and a range in the min
treatment, re�ecting the much di¤erent strategic problems facing buyers and
sellers for the min and max treatments.

To summarize the aggregate behavior of buyers in the price mechanism,
we ran a probit regression of buyer acceptance decisions as a function of
the seller�s price and the buyer�s signal. For the auction treatments, we ran
an Tobit regression of the buyer�s bid as a function of his signal. All six
buyer signal coe¢ cients are positive and highly signi�cant (p < .001). This
clearly contradicts the equilibrium for the min treatment, where a buyer�s
equilibrium strategy is independent of the b. All three seller coe¢ cients in
the price mechanism are negative and highly signi�cant (p < .001). This
clearly contradicts the equilibrium for the max treatment, where a seller�s
equilibrium strategy is independent of s. (Table omitted for brevity).

Result 7 In the price mechanism, buyer acceptance decisions are strictly
increasing in b and strictly decreasing in p in all value treatments. In the
auction mechanism, buyer bids are strictly increasing in b.

To understand the choices of buyers at a deeper level we perform the
following analysis. Consider a model of buyer behavior where there exists
a linear Acceptance Threshold Function (ATF)  (b) such that a buyer with
signal b agrees to trade if and only if the asking price is p <  (b). For any
hypothetical ATF, we use our data to construct a "misclassi�cation score"
orMS for that function, for each value function and each mechanism. This
is done by adding up the number of misclassi�ed observations (trade when
p >  (b) or no trade when p <  (b)) weighted by the magnitude of the mis-
classi�cation (that is, the absolute di¤erence between the actual price and
the cuto¤price such that the observation would not be misclassi�ed) divided
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by the total number of observations. Table 3 reports the estimated ATF,b (b), that minimizes the misclassi�cation score. We also report the mini-
mized MS. This value re�ects the average amount by which observations
are misclassi�ed, with each correctly classi�ed observation taking value 0.
Last, we determine the percentage of observations that are misclassi�ed byb (b), which we callMO. Graphically, b (b) corresponds to the best empirical
dividing line between trade and no trade regions.

For the price treatments, this analysis involves using all the available in-
formation (buyers observe their signal and the ask price and decide whether
to trade or not). In order to construct a comparable measure for the auc-
tion treatments, the only information used is whether trade occurred at the
asking price or not, rather than incorporating the additional information in
the buyer�s bid.

Asset Value Treatment b (b) MS MO

ave price 22:8 + 0:55 b 1.33 16.5%
ave auction 37:2 + 0:20 b 1.25 16.7%

min price 17:4 + 0:33 b 2.28 19.2%
min auction 21:2 + 0:28 b 1.55 16.7%

max price 37:3 + 0:56 b 1.59 14.2%
max auction 39:5 + 0:31 b 2.69 20.4%

Table 3. Linear ATF estimation results.

Result 8 b (b) is steeper in the price treatments than in the auction treat-
ments.

For all three value treatments, the estimated classi�cation line has a
higher slope and lower constant term in the price treatment than in the
auction treatment. In other words, buyers with high (low) signals act in a
more (less) conservative way in the auction than in the price treatments.
The result, combined with our previous �ndings about sellers� behavior,
suggests a di¤erence in behavior between mechanisms by both buyers and
sellers: in the auction mechanism trade is lower when buyers and sellers
have high signals and higher when buyers and sellers have low signals than
in the price mechanism. Finally, the linear misclassi�cation function b (b)
performs quite well across all treatments and mechanisms, with a range of
80% to 86% of observations correctly classi�ed.
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4.2.3 Trading probabilities

Our next look at the data consists in describing the relation between the
buyer-seller signal combinations and the likelihood of trade. Figure 4 plots
for each treatment and each (s; b) pair whether the outcome of the game is
trade (dark circle) or no-trade (light triangle).

[ Figure 4 here ]

Due to the deterministic and pure common value nature of the asset,
the region where trade should occur consists only of the (0,1) pair. As we
already know, this is not what is observed. Generally trade occurs when the
seller�s signal is su¢ ciently low and the buyer�s signal is su¢ ciently high.
The empirical likelihood of trade depending on whether the buyer�s signal
exceeds the seller�s signal or not is reported in Table 4.

Asset Value Treatment % trade given b < s % trade given b > s

ave price 10:6 57.6
min price 12:2 32.0
max price 7:5 40.0

ave auction 11:7 57.4
min auction 6:4 36.0
max auction 9:6 35.7

Table 4. Frequency of trade.

Result 9 Trade rarely occurs when the seller�s signal exceeds the buyer�s
signal. The probability of trade is increasing in the buyer�s signal and de-
creasing in the seller�s signal.

Individuals engage in trade between 30% and 60% of the time whenever
the buyer�s signal exceeds the seller�s signal (and between 6% and 12% of
the time otherwise). This is particularly striking given that the no-trade
theoretical prediction does not dependent on the risk tolerance of individ-
uals. In other words, since all that matters for our theory is that utility
is increasing in the trader�s monetary payo¤, risk-aversion, disappointment
aversion or kinks in the utility function could not account, even partially,
for the observed outcomes.

We then ran a simple probit regression of the likelihood of trade as a
function of the seller�s and buyer�s signal. The results are reported in Table
5.
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Asset Value Mechanism Constant Seller signal Buyer signal pseudo R2

ave price -1.31��� (.23) -.013��� (.003) .029��� (.003) .26
min price -1.39��� (.29) -.005 (.004) .016��� (.004) .10
max price -1.73��� (.35) -.013��� (.004) .028��� (.004) .26
ave auction 0.01 (.28) -.028��� (.004) .016��� (.004) .30
min auction -1.03��� (.37) -.013��� (.004) .015��� (.004) .15
max auction -1.10��� (.24) -.009��� (.003) .015��� (.003) .10

Table 5. Probability of trade as a function of signals.

All slope coe¢ cients have the expected sign, and eleven out of twelve
are signi�cant at the 1% level. Trade depends more on the buyer signal
than the seller signal in all but the ave-auction treatment. However, the R2

are low, which suggests that a probit regression is probably not the most
appropriate method for the purpose of our analysis.

To look at the relationship between buyer and seller signals more closely,
we conduct a classi�cation analysis similar to section 4.2.2. Consider a linear
function �(s) with the property that trade occurs if the pair of signals (s; b)
is such that b > �(s). As in the estimation of ATFs, for any �(s) we
empirically determine the number of misclassi�ed observations (trade when
b < �(s) or no trade when b > �(s)) weighted by the magnitude of the
misclassi�cation (that is, the absolute di¤erence between the actual signal
of the buyer and the cuto¤ signal such that the observation would not be
misclassi�ed). This value divided by the total number of observations is
called the misclassi�cation score or MS. For each treatment, we report the
estimated function, b�(s), that minimizes the misclassi�cation score. We also
report the percentage of misclassi�ed observations or MO. Graphically, b�
corresponds to the best dividing line between the trade and no trade regions
in the (b; s) signal space. The results of the estimated functions are presented
in Table 6 and included in the graphs of Figure 4.
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Asset Value # obs. Treatment b�(s) MS MO

ave [260] price 42:3 + 0:40 s 3.82 23.5%
ave [240] auction 23:4 + 0:84 s 5.09 25.8%

min [240] price 69:9 + 0:15 s 5.34 30.0%
min [240] auction 71:8 + 0:19 s 4.57 22.5%

max [240] price 61:8 + 0:29 s 2.82 20.0%
max [240] auction 68:9 + 0:14 s 4.89 20.8%

Table 6. Estimated trade vs. no-trade divisions.

Result 10 b�(s) is an increasing function.
The slope of the classi�cation function is positive in all six treatments.

Sellers with higher signals set higher prices for the asset, thus decreasing
the likelihood of a trade. Conversely, buyers with higher signals set higher
bids and are also more likely to accept a given trade. Overall, the model
correctly classi�es about 75% of the trade outcomes, although the slope
and accuracy of classi�cation di¤er substantially across value treatments
and mechanisms. The misclassi�cation score is two to four times higher
than the ATF estimation of Table 3, suggesting that this optimal division
model is less appropriate for the analysis of trade as a function of signals.
The di¤erences between the estimated functions in the price and auction
treatments reinforce the argument we made previously about the impact
that the trading mechanism has on strategies.

4.3 Learning

A natural question to ask is whether individuals adapt their strategies over
the course of a session. We designed the experiment so that subjects could
gain experience in both roles. This seems especially important when the
strategic considerations of the two roles are much di¤erent. Understanding
the incentives of a seller may lead a buyer to adjust behavior, and vice versa,
thereby speeding up learning. Clearly, the behavior is out of equilibrium,
and for this reason we wanted subjects to have considerable feedback, in
both roles, with a total of twenty repetitions of the game. A player who
is initially naive has an opportunity to recognize that his or her losses (as
a seller in ave and max and as a buyer in min) are due to the adverse
selection problem and adapt their behavior accordingly. A simple �rst cut
to investigate learning consists in breaking the data down into early and late

20



plays. In each session, there were 20 rounds of play. We code the choices in
the �rst 10 rounds as "inexperienced" and the choices in the last 10 rounds
as "experienced". Table 7 presents the average choices in all six treatments
broken down by experience level.

Treatment Round Seller price Buyer bid % trade Seller gain
given trade

ave �price inexp. 62.2 (3.12) � 33.1 -3.8 (2.28)
exp. 60.8 (2.92) � 30.8 -5.4�� (2.35)

ave �auction inexp. 55.2 (2.87) 44.8 (2.55) 39.2 -1.7 (3.27)
exp. 61.4 (3.67) 45.8 (2.38) 30.8 -3.0 (3.48)

min �price inexp. 52.2 (3.14) � 24.2 -1.3 (3.41)
exp. 51.0 (2.25) � 20.8 3.8 (4.25)

min �auction inexp. 57.7 (2.44) 31.5 (3.35) 19.2 4.5 (4.16)
exp. 55.1 (2.98) 25.5 (3.03) 18.3 6.6 (4.01)

max �price inexp. 80.4 (2.28) � 29.2 0.5 (3.19)
exp. 84.1 (2.42) � 18.3 -14.2��� (3.63)

max �auction inexp. 75.9 (2.41) 50.6 (2.51) 20.8 -11.2�� (4.71)
exp. 77.0 (3.06) 52.2 (5.06) 23.3 -7.8 (6.08)

Table 7. Average choices of sellers and buyers by level of experience.

Result 11 There is no clear evidence of learning by either buyers or sellers.

There is little evidence of systematic changes in the average behavior of
sellers and buyers between early and late rounds. Sellers increase prices in
two treatments, and keep them roughly constant in the other four. Trade
is constant in the treatments where sellers� price do not change and de-
creases otherwise. This suggests small changes in buyers�behavior as well.
The result is consistent with the �ndings of Carrillo and Palfrey (2009) in
a related two-sided game of incomplete information, and contrasts with the
trade game by Angrisani et al. (2009) and the common value auctions liter-
ature where subjects learn over time to trade and bid close to equilibrium
predictions.

The absence or near absence of learning trends occurs in spite of sub-
stantial feedback after each round of play, as well as experience in both roles.
For example, the buyer knows the price asked by the seller and, at the end
of each round, learns the seller�s signal. Therefore, in principle, buyers can
partially reconstruct an average price function of sellers. The same applies

21



to sellers, who learn the buyer�s bid and signal (in the auction treatments)
or the acceptance decision and signal (in the price treatments). It appears,
however, that this information does not lead to changes in individual behav-
ior substantial enough to produce trends at the aggregate level.

To explore this issue in more detail, we next ask whether the behavior
of buyers and sellers as a function of their own signal is di¤erent at the
beginning than at the end of the experiment. Again, we divide the sample
into early play (�rst 10 rounds) and late play (last 10 rounds). We then
perform a maximum likelihood estimation in each subsample and in the full
sample. For all traders in the auction treatment and sellers in the price
treatment, we run a linear regression of price (seller) or bid (buyer) on
own signal and constant term, for the two experience levels separately, and
compare it to the results from the pooled regression. For the case of buyers in
the price treatment, we instead perform a probit estimation, and control for
the seller�s o¤er price and the buyer�s signal. We then conduct a likelihood
ratio test to determine whether di¤erences in choices between early and late
rounds are statistically signi�cant. The �ndings are summarized in Table 8.

Player Treatment Likelihood estimation �2-test
Asset value mechanism constrained unconstrained d.f.

seller ave price -1280.4 -1281.2 2 1.57
seller min price -1013.1 -1016.4 2 6.63��

seller max price -972.0 -975.9 2 7.81��

seller ave auction -1169.2 -1173.1 2 7.61��

seller min auction -999.8 -1002.7 2 5.90
seller max auction -1015.0 -1015.2 2 0.48
buyer ave price -86.2 -87.5 3 2.61
buyer min price -93.0 -95.4 3 4.71
buyer max price -79.2 -84.5 3 10.63��

buyer ave auction -1154.9 -1165.1 2 20.35���

buyer min auction -1043.8 -1046.4 2 5.26
buyer max auction -1095.0 -1097.6 2 5.20

Table 8. E¤ect of experience on prices, bids and acceptance rates.

In �ve out of twelve treatments di¤erences are statistically signi�cant
(four at the 5% level and one at the 1% level). Four of them correspond
to cases where both buyers and sellers in a given treatment changed their
behavior, so only subjects in one of the roles eventually bene�t from their
modi�ed strategy. Overall, it reinforces the idea that traders do not change
behavior signi�cantly over time.
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5 Individual behavior

One possible explanation for our �nding of non-equilibrium behavior and
substantial trade, and possibly also an explanation for the variation of trade
frequency across our treatments is that there is a relatively small fraction
of subjects in the pool who violate equilibrium behavior, by systematically
overbidding (or over-accepting) as buyers and underpricing as sellers. This
could present a much di¤erent picture of our results than the one seen from
a purely aggregate analysis of behavior, where the data is presumed to be
generated by a "representative subject". The possibility of these di¤erent
behavioral types requires a closer look at the individual level data. There
are not enough observations at the individual level to obtain good estimates
of pricing functions and bidding/acceptance functions (20 rounds of data
for each subject on both roles), but there is enough data to identify certain
kinds of behavior.

Because the most signi�cant observation from the aggregate analysis is
the strong violations of Nash equilibrium behavior that result in substantial
trade in all mechanisms and value treatments, the natural starting point
for an individual analysis of behavior is to explore variations across sub-
ject with respect to the use of equilibrium strategies. We use the following
simple classi�cation approach. For each subject and for both subject roles,
we simply look at the fraction of their decisions that are consistent with
Nash equilibrium. Recall that inconsistencies take the form of overbidding
(or over-accepting) by buyers and underpricing by sellers. Thus, for each
subject and for each role and signal draw we observe for that subject, we
classify whether their decision was consistent or inconsistent with equilib-
rium behavior.12

This results in two "scores" for each subject: the frequency they play
Nash (do not overbid) as a buyer and the frequency they play Nash (do
not underprice) as a seller. These scores, rounded to the nearest .05, are
summarized in Figure 5 which displays the frequency distribution of these
individual scores for each of our six treatments.13

12Recall that for some treatments and roles there are several possible decisions that are
consistent with equilibrium. For example, in the min treatment, equilibrium behavior of
sellers only requires that the seller post a price at least as high as her signal. Thus, for
this treatment, any observation of a price at least as great as the seller�s signal is counted
as consistent with equilibrium.
13Because roles were randomly assigned in each round, most subjects did not have

exactly 10 rounds as a seller and 10 rounds as a buyer. Also, each treatment has 24
subjects except ave-price which has 26 subjects.
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[ Figure 5 here ]

We then classify a subject, separately for each role, as a Nash player if
at least 80% of the decisions they made in that role were consistent with
Nash equilibrium. A subject is classi�ed as non-Nash if at least 80% of the
decisions they made in that role were inconsistent with Nash equilibrium.14

Table 9 reports the results of that analysis.

Asset Value Mechanism N Seller Role Buyer Role
Nash non-Nash Nash non-Nash

ave price 26 4 21 7 1
ave auction 24 1 18 0 19
min price 24 11 2 13 0
min auction 24 8 1 0 24
max price 24 0 22 23 0
max auction 24 1 19 8 5

Table 9. Number of Nash players by role and treatment.

There are several observations about this classi�cation analysis. First,
non-Nash behavior is highly dependent on the trader role. In the price
mechanism it was much more prevalent among traders in the seller posi-
tion than in the buyer position. For buyers in the price treatment, only 1
subject out of 74 systematically exhibits non-Nash behavior. This contrasts
sharply with the 45 of the 74 subjects who are non-Nash in the seller�s role.
(Recall that they are the same 74 subjects, just di¤erent roles.) Second,
the prevalence of non-equilibrium behavior is highly dependent on the asset
valuation. Nearly all sellers are non-Nash in the ave and max treatments
and almost none in the min treatment. For buyers in the auction treat-
ment, nearly all are non-Nash in the ave and min treatment, and very few
in the max treatment. Third, for sellers, non-Nash behavior did not depend
on the mechanism, which makes sense since the seller strategy space is the
same in both. For the buyers, non-Nash behavior increases dramatically in
the auction mechanism, especially for the ave and min valuation treatments
(19/24 and 24/24 subjects classi�ed as non-Nash in the buyer role, respec-
tively). This is partly due to the di¤erent strategy space that buyers face

14The choice of 80% is somewhat arbitrary, but a similar picture emerges with other
thresholds, as one can see from the �gures. Indeed, for buyers in the min auction treat-
ment, there was not a single Nash-consistent bid (B = 0) for any of the 24 subjects.
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in the two mechanisms.15 Fourth, non-equilibrium behavior and the high
frequency of trade does not appear to be caused by irrational behavior of a
few confused subjects. In all cases where we observe signi�cant non-Nash
behavior, more than 75% traders share that behavior.16 Thus, while there
is some evidence of subject heterogeneity we do not see it as being a major
factor in explaining the results.

Fifth, there are a signi�cant number of traders who play Nash equilib-
rium nearly all the time, and this di¤ers substantially depending on the
asset valuation and the mechanism. With the max asset valuation, 31 of
48 subjects are Nash players nearly all the time in the buyer�s role, while
only 1 of (the identical) 48 subjects is a Nash player in the seller�s role. In
the other two asset valuation treatments, 40% of subjects are Nash players
in the buyer�s role in the price mechanism, but 0% are Nash players in the
auction mechanism. For sellers, there is much more Nash play in the min
treatment (40% are Nash players) than either of the other asset valuation
treatments. This suggests that there is a di¤erence across roles and across
treatments in terms of the strategic complexity or di¢ culty of the bargaining
games. For example, for the buyers, the max price game seems particularly
easy, because the buyer can guarantee himself a pro�t by taking any price
below his signal. Similarly, the seller can guarantee no loss in the min game
simply by setting price at any level greater than or equal to her signal. Thus,
for these games, equilibrium strategies coincide with secure strategies, and
have the side bene�t of generating pro�ts if the trading partner is not a Nash
player. In contrast, the ave games seem particularly di¢ cult for traders in
both roles.

6 A behavioral theory

In this section, we consider a behavioral theory that may account for the
choices of our traders. We assume that players have an (incorrect) mutually
held belief that the action of an opponent is less correlated with their infor-
mation than is actually the case. This type of cognitive limitation was �rst
discussed in Holt and Sherman (1994). Two recent theories have generalized
the argument: "cursed equilibrium" (Eyster and Rabin, 2005) and "analogy
based expectations" (Jehiel and Koessler, 2008). We focus on this behav-

15For example, for the min asset valuation buyers should reject any positive price in the
price mechanism and set a bid equal to 0 for all b in the auction mechanism.
16This includes sellers in the ave and max treatments for both mechanisms, and buyers

in the ave-auction and min-auction treatments.
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ioral theory for two reasons. First, it is built around the central element
of our game, namely belief formation under private information. Second,
cursed equilibrium has received support over two other theories, quantal
response equilibrium and cognitive hierarchy, in the related �compromise
game" (Carrillo and Palfrey, 2009).

For analytical tractability we solve the game only for the price mecha-
nisms and with "fully cursed" players. In this extreme case, subjects have
a mutual belief that action and information are completely uncorrelated.
Applying this to our model, a fully cursed buyer in the price treatments will
trade if and only if the price set by the seller is less than the buyer�s expected
value of the asset given his own signal, E[v(s; b) j b]. Simple computations
yield:

E[v(s; b) j b] =

8<:
25 + b=2 (ave)
b� b2=200 (min)
50 + b2=200 (max)

(1)

The decision problem for sellers is slightly more complex. A fully cursed
seller in the price treatments anticipates correctly how the buyer�s proba-
bility of acceptance will depend on the o¤er price, p. However, once a price
is accepted, the seller fails to recognize that the value of the asset should
re�ect that only buyers with certain signals b have accepted the trade. For-
mally and given a price p, a cursed seller believes that his expected payo¤
from setting price p, given signal s, is:

�(p j s) = Pr(E[v(s; b) j b] > p)� p+ Pr(E[v(s; b) j b] < p)� E[v(s; b) j s]

So for example and given (1), the pro�t of a cursed seller for the ave asset
value treatment can be written as:

�(p j s) = Pr(25 + b=2 > p)� p+ Pr(25 + b=2 < p)� (25 + s=2)

=
150� 2p
100

� p+ 2p� 50
100

� 50 + s
2

8 p 2 [25; 75]

and analogously for the min and max treatments.
Denote by p�(s) = argmax p �(p j s), the optimal price of a fully cursed

seller. After some algebra, we get:

p�(s) =

8>><>>:
50 + s

4 (ave)
100
3 + 1

3s�
1
600s

2 (min)
1100
18 + 1

600s
2 +

q
10000+3s2

81 (max)
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Having determined the theoretical choices of cursed individuals in the
price treatments, we can now compare them with the data.

For the analysis of buyers, we follow the classi�cation method employed
in Table 3 of section 4.2.2. Note that the equations in (1) correspond to
nonlinear theoretical ATFs for the cursed equilibrium model. We therefore
consider the best quadratic (rather than linear) ATF, to make it compara-
ble to the cursed prediction. The performance of the cursed and empirical
quadratic ATFs of buyers are described in Table 10 and graphically repre-
sented in the left column of Figure 3, with the misclassi�cation score (MS)
and the percentage of misclassi�ed observations (MO) computed exactly as
in Table 3.

Value Strategy b (b) MS MO

ave cursed 25 + 0:5 b 1.33 16.9%
empirical 33:8 + :02 b+ :005 b2 1.29 16.2%

min cursed b� :005 b2 2.12 17.9%
empirical �10:2 + 1:70 b� :012 b2 1.90 18.3%

max cursed 50 + :005 b2 1.46 9.6%
empirical 63:1� :33 b+ :007 b2 1.43 12.1%

Table 10. Classi�cation of buyers�acceptance decision.

Result 12 The cursed equilibrium model classi�es buyer acceptance deci-
sions as well as the best �tting quadratic ATF and better than the best linear
ATF.

Based on misclassi�cation analysis, the dividing line for the cursed model
is remarkably accurate in all price treatments. In the ave and max treat-
ments, the cursed and empirical strategies are virtually identical in terms
of the misclassi�cation score (for the max treatment fewer observations are
misclassi�ed with the cursed function). In the min treatment, the di¤erence
in performance is slightly bigger, but this may be due to a limited number
of observations. In fact, according to the empirical strategy, the likelihood
of acceptance is decreasing in the buyer�s signal for all b > 70:8. This is the
result of a few buyers with high signals of 75 and above who play the Nash
equilibrium, and therefore refuse to trade even when the asking price is low
(see Figure 3). When comparing with Table 3, it is also remarkable that the
cursed quadratic functions perform better than the best linear �ts in both
the min and max treatments. Also, although the number of misclassi�ed
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observations is non-negligible (up to 18%), in more than 50% of the cases,
the price is within 10 units of the correctly classi�ed value. Finally, MS
is greatest in the most di¢ cult case for buyers, namely the min treatment
where the equilibrium strategy (but not the best response to the empirical
behavior of sellers) is never to trade.

The cursed equilibrium strategy of sellers can also be compared to its
empirical counterpart. In Table 11, we report a quadratic OLS regression
of the seller�s price as a function of the signal. Both the theoretical cursed
function, p�(s), and the empirical quadratic estimates reported below are
graphically represented in the left column of Figure 2.

Value Mechanism Constant s s2 adjusted R2

ave price 41.5��� (3.94) .44�� (.214) -.001 (.002) .276
min price 31.3��� (4.79) .49�� (.187) -.001 (.002) .281
max price 76.0��� (4.38) -.10 (.135) .003�� (.001) .215

Table 11. Seller�s quadratic OLS.

Result 13 The cursed equilibrium model implies seller pricing functions
similar to what is observed in the data.

The theoretical cursed pricing functions predict that the constant terms
should be ordered max > ave > min and the linear coe¢ cients should be
ordered min > ave > max. The quadratic coe¢ cient is predicted to be 0
in the ave treatment, small and negative in the min treatment and small
and positive in the max treatment. This is the pattern we �nd in Table
11, with the exception that the quadratic coe¢ cient for the min treatment
is not signi�cantly di¤erent from 0. In general, the overall shape of the
empirical function is quite similar to the cursed prediction for the ave and
max treatments and somewhat steeper for the min treatment (Figure 2, left
column).

Finally, we can compare the empirical likelihood of trade and seller prof-
its with the predictions of the fully cursed model given our data. The results
are presented in Table 12.
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ave min max
cursed empirical cursed empirical cursed empirical

% trade 31.2 31.9 27.9 22.5 20.0 23.8
% trade given b < s 0.0 10.6 0.0 12.2 0.0 7.5
% trade given b > s 47.4 57.6 55.5 32.0 41.0 40.0
Average pro�t (seller) -0.3 -1.5 2.9 0.2 0.2 -1.2

Table 12. Cursed equilibrium: trade and seller pro�ts in price mechanism.

Result 14 The cursed equilibrium model implies trade frequencies similar
to what is observed in the data. It implies an ordering of seller pro�ts that
we �nd in the data. However, we observe seller losses in the max treatments
that are not predicted by the cursed model.

The theoretical predictions of trade range between 20% and 31% of the
time in the price mechanism, depending on the value treatment. This com-
pares with the observed range between 23% and 32%. The biggest departure
is a 5% overestimation of trade by the curse model in the min treatment.
Furthermore, the model predicts trade only if b > s. In the experiment,
there was very little trade (10%) when b < s.

In the cursed equilibrium model, expected seller pro�ts range between
2.9 in min and -0.3 in ave, whereas the corresponding numbers in our data
range between 0.2 in min and -1.5 in ave. The ordering is therefore correct,
but the magnitudes are not. The sellers in our price mechanism lose slightly
more money on average than the expected losses in a cursed equilibrium.
However, the di¤erence is not statistically signi�cant.

7 Conclusion

This study investigated behavior in a common value bilateral bargaining
game with two sided private information. We �rst prove that the theoret-
ical result of no trade can be extended to our setting. The results of an
experiment identify systematic ways in which the extent of behavioral vio-
lation of no trade in these environments is highly dependent on the trading
mechanism and asset valuation structure, and has di¤erent economic con-
sequences for buyers and sellers of the asset. Despite the compelling and
general logic of no-trade equilibrium, traders trade frequently. When the
buyer�s signal exceeds the seller�s signal, the likelihood of trade is between
32% and 58% depending on the treatment. Buyers generally outperform
sellers and the di¤erence persists even when traders have gained experience
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both in the role of buyers and sellers. In fact, for all six treatments there is
little evidence of learning by traders in either the buyer or seller role, despite
the substantial amount of feedback provided. The results also demonstrate
that the type of mechanism (a seller�s take-it-or-leave-it price vs. a seller-
price double auction) a¤ects the likelihood of trading even though both are
strategically equivalent. Furthermore, the asset valuation structure has a
signi�cant e¤ect on the violations of Nash equilibrium by buyers and sellers
and as a consequence on the extent of trade and its e¤ect on the division of
surplus between buyers and sellers. The cursed equilibrium theory explains
some general patterns of the data, such as the buyer�s acceptance behavior
and the aggregate probabilities of trade. However, it has a more di¢ cult
time accounting for the variance in the behavior of sellers and the pro�ts of
traders in the di¤erent roles.

The e¤ect of the trading mechanism on outcomes is particularly surpris-
ing and deserves further investigation. We have restricted our attention to
two mechanisms, seller price setting and double auction, but there are many
other bargaining structures that could be considered and compared. Ob-
taining behavioral insights on how strategic choice depends on mechanisms
that are strategically equivalent could be of interest not only to improve our
understanding of bilateral trading games but also to learn how to design
e¢ cient allocation mechanisms in more general economic environments.

This approach could also be usefully applied to study bargaining be-
tween three or more parties, as in markets and auctions. It is an interesting
open question whether the tendency to trade excessively is exacerbated or
attenuated in environments with additional buyers and/or sellers.

Finally, on the theoretical side, it is worth exploring alternative models
to explain better the main features of the data (substantial trade, advantage
of buyers, importance of the order of moves, and absence of learning). Some
natural candidates would be partially cursed equilibrium, quantal response
equilibrium (McKelvey and Palfrey, 1995), and theories based on levels of
strategic sophistication such as cognitive hierarchy (Camerer et al., 2004).
Based on our earlier study of the compromise game (Carrillo and Palfrey,
2009), these theories provide only partial explanations even when combined
into hybrid models, and there remains much to learn about behavior and
outcomes in games with two-sided private information and common values.
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Appendix: Sample Instruction Script (auction �min)

Thank you for agreeing to participate in this research experiment on group decision

making. During the experiment we require your complete, undistracted attention. So we

ask that you follow these instructions carefully. You may not open other applications on

your computer, chat with other students, or engage in other distracting activities, such as

using your cell phones or head phones, reading books, etc.

For your participation, you will be paid in cash, at the end of the experiment. Di¤erent

participants may earn di¤erent amounts. What you earn depends partly on your decisions,

partly on the decisions of others, and partly on chance. So it is important that you listen

carefully, and fully understand the instructions before we begin. You will be asked some

review questions after the instructions, which have to be answered correctly before we can

begin the paid session.

The entire experiment will take place through computer terminals, and all interaction

between you will take place through the computers. It is important that you not talk

or in any way try to communicate with other participants during the experiment except

according to the rules described in the instructions.

We will start with a brief instruction period, where you will be given a complete

description of the experiment. If you have any questions during the instructions, raise

your hand and I will answer your question. If any di¢ culties arise after the experiment

has begun, raise your hand, and I will assist you privately.

You will make decisions over a sequence of 20 di¤erent decision rounds, called matches.

In each match, you will receive a payo¤, that depends on your decision in that match and

on the decision of one randomly selected participant you are matched with.

At the end of the experiment, you will be paid the sum of what you have earned in all

20 decision rounds, plus the show-up fee of $10.00. Everyone will be paid in private and

you are under no obligation to tell others how much you earned. Your earnings during

the experiment are denominated in POINTS. Your DOLLAR earnings are determined

by multiplying your earnings in POINTS by a conversion rate. In this experiment, the

conversion rate is 0.02, meaning that 50 POINTS equals one dollar.

Here is how each decision round, or match, goes in this experiment. First, the com-

puter randomly matches you into pairs. Since there are 10 participants in today�s session,

there will be divided into 5 matched pairs in each match. You are not told the identity of

the participant you are matched with. Your payo¤ depends only on your decision and the

decision of the one participant you are matched with. What happens in the other pairs

has no e¤ect on your current or future payo¤s, and vice versa. Your decisions are not

revealed to the other pairs.

Next, the computer randomly assigns a number to you, which is equally likely to be any

integer from 1 to 100. This number is called your "clue." The clue is chosen independently

for each participant. Therefore usually you and the person you are matched with will have
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di¤erent clues, although there is a very small (1%) chance the other participant in your

pair has the same clue you have. You are told your clue, but will not be told the clue of

the person you are matched with until after both of you have made your decisions.

The decision problem each pair faces is one in which there is a single object that must

be allocated to one of the two participants in that pair. The object has a real money

value which is equal to the minimum of the two clues of the participants. For example,

if your clue is 78 and the other�s clue is 19, then the value equals 19. Notice that your

clue gives you only partial information about this value, since it also depends on the other

participant�s clue.

For each pair, the computer randomly selects one participant to be "the seller" and the

other participant to be "the buyer". This buyer-seller assignment is completely random

and does not depend in any way on anyone�s clues or past decisions. These assignments

will randomly change from round to round.

The seller then submits an o¤er, stating the lowest price at which they would be

willing to sell the object to the buyer. At the same time, the buyer submits a bid, stating

the highest price they would be willing to pay the seller for the object. If the seller�s o¤er

is less than or equal to the buyer�s bid, we say "a trade occurs," the buyer is allocated

the object and pays the seller a price equal to the seller�s o¤er. In this case, the seller

earnings for that match equals the price and the buyer earnings equal the value minus the

price. If the seller�s o¤er is strictly greater than the buyer�s bid, then "no-trade occurs,"

and the seller keeps the object. In this case, the seller earnings simply equal the value

and the buyer earnings are zero. We will now proceed through two practice matches to

familiarize you with the computer screens.

Notice that it is possible for a trade to occur at a price above the value. In this case,

the buyer earns a negative amount in that decision round. If this value-price di¤erence

is negative, and trade occurs, it will be subtracted from the buyer�s earnings. Remember

that earnings accumulate during the experiment, so negative earnings in one match are

o¤set with positive earnings in other matches. When all pairs have �nished the match

the computer will then show you the results of your match only, displaying the other

participant�s clue, and summarizing whether there is trade, the price, the payo¤, etc. We

then proceed to the next match. For the next match, the computer randomly matches

participants into new pairs, and randomly reassigns a new clue to each participant. Your

new clue does not depend in any way on the past decisions or clues of any participant

including yourself. Clues are completely independent across pairs, across participants,

and across matches. After learning your new clue, you are randomly assigned to be either

a buyer or seller. Decisions and payo¤s are determined in a similar manner as in the

previous match.

This continues for 20 matches, after which the experiment ends.

We will now begin the Practice session and go through two practice matches. During

the practice matches, please do not hit any keys until you are asked to, and when you enter
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information, please do exactly as asked. Remember, you are not paid for these 2 practice

matches. At the end of the second practice match you will have to answer some review

questions. Everyone must answer all the questions correctly before the experiment can

begin. The screen in front of the room summarizes the main features of the experiment.

[Hand out record sheets and pencils.]

[AUTHENTICATE CLIENTS]

Please double click on the icon on your desktop that says "NT". When the computer

prompts you for your name, type your First and Last name. Then click SUBMIT and

wait for further instructions.

[START GAME]

[SCREEN 1][SCREEN 2]

You now see the �rst screen of the experiment on your computer. It should look

similar to this screen if you are a buyer, and this screen if you are a seller. [show both

screens] Do not do anything right now with the computers, but listen to my instructions

and follow them carefully.

[Explain BASIC PARTS of screen pointing as you read.]

At the top left of the screen, you see your subject ID. Please record that on your

record sheet now. You have been randomly matched by the computer with exactly one of

the other participants. These pairings will change randomly after each match.

The �rst line states whether you have been randomly assigned as the buyer or the

seller for this match. Please record this on your record sheet in the column labeled You

(B/S). Write S if you are a seller and B if you are a buyer. The second line states your clue

for this match. This is revealed to you on your screen, but is not revealed to anyone else.

[point on overhead]. Please record your clue on your record sheet in the column labeled

"Your Clue". Of course your clue is probably di¤erent from the one on this slide.

The participant you are matched with was also randomly assigned a clue, but that

will not be revealed to you until the end of the match. All you know now is that their

clue is some number between 1 and 100, with every number being equally likely.

If you are a seller, you are asked to use your keyboard to submit an o¤er. The o¤er

must be an integer between 1 and 100. DON�T DO THIS YET! When it is time to start,

we will tell each seller exactly what o¤er to type in.

If you are the buyer, you are asked to use your keyboard to submit a bid. The bid

must be an integer between 1 and 100. DON�T DO THIS YET! When it is time to start,

we will tell each buyer exactly what bid to type in.

Point to Seller O¤er Screen [explain it]

Point to Buyer Bid Screen [explain it]

After the seller has submitted an o¤er and the buyer has submitted a bid, the results

are displayed for both the buyer and the seller, including BOTH clues, as well as the value,

whether there is trade, the price if there is trade, and the earnings. Remember, the value

of the object is equal to the minimum of the two clues.
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If the buyer�s bid was greater than or equal to the seller�s o¤er, then trade occurs at

a price equal to the seller�s o¤er. The buyer payo¤ is the value minus the price and the

seller payo¤ is the price. If the buyer�s bid was less than the seller�s o¤er, then no trade

occurs. In that case, the buyer payo¤ is zero and the seller payo¤ is the value.

We will now proceed with the �rst practice match but I will tell you exactly what to

type. Your are not paid for the decisions in the practice matches. At this time, regardless

of your clue, please type in an o¤er or bid equal to the last two digits of your SSN + 1.

For example, if your SSN ends in 32, you would type in 32+1=33. When everyone has

entered these bids and o¤ers, the results of your match are summarized on your screen

(point to slide).

[SCREEN 3] [SCREEN 4]

[Go through the seller and buyer results screens of the example.]

The bottom half of your screen contains a table summarizing the results for all matches

you have participated in. This is called your history screen. Notice that it only shows the

results from your �rst match, not the results from any of the other pairs. It will be �lled

out as the experiment proceeds.

[Go over each column of history screen. Go around and verify that all subjects cor-

rectly �lled out their record sheet]

Record this information on your record sheets in the appropriate columns. We now

proceed to the second practice match

[Start next practice match]

You have been be randomly re-matched into new pairs, randomly assigned new roles

as sellers or buyers, and randomly assigned new clues. Please take note of your new clue,

and also note whether you are the buyer or the seller. [Ask if everyone sees it, and wait

for con�rmation from them.] Please make your decisions in match 2 following the same

instructions as match 1, (bid or o¤er equals your last two digits of SSN +1) and then wait

for further instructions, recording the information, as before.

[wait for them to complete practice match 2]

Practice match 2 is now over. Please pull out the privacy panels on both sides of your

workstation. [Make sure they do!]

You now see a screen with the �rst page of the review quiz. Please complete the �rst

page of review questions. You must answer all the questions correctly to go to page 2 of

the review quiz. Raise your hand if you have a question about the quiz. After you have

correctly answered all the questions on both pages of the quiz, wait quietly for everyone

else to �nish. [WAIT for everyone to �nish the Quiz]

Are there any questions before we begin with the paid session? We will now begin

with the 20 paid matches of the experiment. If there are any problems or questions from

this point on, raise your hand and an experimenter will come and assist you.

[START First Paid MATCH; do not auto advance]

[After MATCH 21, read:]
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This is the end of the experiment. You should now see a popup window, which displays

your total earnings in the experiment. Please record that amount on the bottom row of

your record sheet.

We will round this amount up to the nearest quarter, and pay you that plus the show-

up fee of $10 in cash. We will pay each of you in private in the next room in the order of

your Subject ID numbers. Remember you are under no obligation to reveal your earnings

to the other players.

Please put the mouse behind the computer screen and do not use either the mouse

or the keyboard at all. Please be patient and remain seated and keep the dividers pulled

out until we call you to be paid. Do not talk with the other participants or use your cell

phone or laptops while you are in the laboratory. Thank you for your cooperation.

Could the person with ID number 0 please go to the next room to be paid.
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Figure 1. Seller’s Net Gains by Treatment 

 
 



 

Figure 2. Seller’s Asking Price by Treatment 

 



 

Figure 3. Buyer’s Acceptance or Bid by Treatment 

 

 



 

 

Figure 4. Likelihood of Trade as a Function of Signals 



 

 

 

 

Figure 5. Distribution of Individual Proportions of Nash Play  

by Role and Treatment. 


