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Abstract

This study examines the relationship between academic achievement and strategic ability to
coordinate among middle school students. We designed an experimental framework using re-
peated asymmetric Battle of the Sexes and Hawk-Dove games, to explore how cognitive and
social skills related to academic success influence behavior. A total of 132 students partic-
ipated, divided into groups of high and low academic achievers based on their performance
at school. Our results show that, on average, high achievers coordinate better on equilib-
rium outcomes with simple but effective strategies and obtain higher payoffs compared to low
achievers. This indicates that academic success may reflect broader cognitive abilities–such as
strategic thinking, anticipation of others’ choices, and cooperation–crucial for navigating real-
world interactions. However, we notice also substantial heterogeneity within groups. Finally,
performance in pairs with one high and one low achiever is intermediate but closer to the
level of high achievers, suggesting potential peer learning effects and the educational value of
mixed groups to promote guidance and joint improvements. These findings emphasize the role
of long-term learning in developing cognitive skills that facilitate cooperation and strategic
interaction in complex environments.

Keywords: developmental game theory, coordination, repeated games.

Significance Statement

This study explores how academic achievement relates to strategic coordination among middle

school students. Using classical coordination games, we examined how cognitive and social skills

linked to academic success impact behavior. We divided our 132 participants into high and low

achievers. Results showed that high achievers coordinate better, using simple strategies and earning

higher payoffs than low achievers. This suggests that academic success reflects broader cognitive

abilities, such as strategic thinking and cooperation. Additionally, mixed pairs (with one high and

one low achiever) performed closer to high achievers, hinting at peer learning effects and the value

of diverse groupings for skill development.
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1 Introduction

In game theory, coordination refers to the process by which players align their strategies to

achieve a mutually beneficial outcome. This is especially important in games with multiple equi-

libria—situations where different outcomes are possible where no player has an incentive to change

their strategy on their own (Camerer, 2003; Cooper and Weber, 2020).

Coordination games are highly relevant for modeling real-world challenges such as compromise

in relationships, decision-making in team projects, dynamic partnerships, and conflicts over shared

resources. A substantial body of experimental research has highlighted differences in the complexity

of coordination mechanisms, often linked to variations in personality traits (Proto et al., 2019),

cultural backgrounds (Jackson and Xing, 2014; Peryman and Kelsey, 2021) and identity of the

peers involved (Eckel and Wilson, 2007; Lambrecht et al., 2024). However, developmental aspects

of these abilities, particularly during adolescence—a critical period for acquiring cognitive and

social skills—remain under-explored.

Recent research from our group indicates that the ability to coordinate develops throughout

childhood and adolescence (Brocas and Carrillo, 2023). Adolescence is widely recognized as a piv-

otal period for developing decision-making styles that often persist into adulthood. Differences in

coordination mechanisms seen in adults may stem from variations in intellectual ability, emotional

intelligence, or the capacity to read social cues—skills that mature during adolescence and blend

into a sophisticated composite ability essential for strategic interaction. Does academic achieve-

ment during this formative stage serve as a reflection of this multifaceted skill? Can it reliably

predict performance in complex coordination tasks? Despite its relevance, little research has ex-

plored how long-term learning ability, captured by academic success, influences adolescents’ ability

to navigate strategic environments.

In this study, we investigate the link between academic achievement and strategic coordination

abilities in adolescents, focusing on middle school students (ages 11 to 14). Academic success, as a

composite measure of cognitive and social skills developed through formal education, may reflect

broader abilities crucial for strategic interactions. We hypothesize that high academic achievers

are better equipped to anticipate others’ actions, employ effective strategies, and obtain higher

payoffs in repeated coordination games. Also, pairs involving one high and one low achiever

may demonstrate intermediate outcomes, suggesting potential peer learning effects. Finally, low

achievers may struggle with these tasks, reflecting challenges in problem-solving, attention, and

cooperative behaviors. To explore this idea, we design a cooperative experimental paradigm and

test the behavior of adolescents with varying levels of academic success.

A main factor in coordination is whether the game is played once or repeatedly. In a one-shot

game without communication, coordination can be challenging. In many real-world scenarios, how-

ever, individuals often interact multiple times with the same people. Repeated play allows them

to learn from past experiences and signal their intentions to try and resolve potential miscoordi-

nations. Overall, while one-shot games are useful for studying how norms influence coordination,

repeated interactions involve identification of patterns from previous play and strategic signal-
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ing—factors we believe are more closely linked to academic accomplishments. For this reason, we

focus on a repeated coordination framework.

A key finding in related studies is the remarkable ability of adults to achieve long-term co-

ordination on fair and Pareto-efficient equilibria in games like the Stag Hunt and the symmetric

Battle of the Sexes, where coordination in one-shot versions is rare (McKelvey and Palfrey, 2001;

Ioannou and Romero, 2014). This pattern of behavior develops gradually during childhood and

solidifies in adolescence (Brocas and Carrillo, 2023). In both cases, adolescents and adults alike

often recognize the benefits of a cooperative approach. Intuitive ideas of fairness and efficiency

are less effective in the Hawk-Dove (or chicken) game, which involves balancing aggression and

avoidance, and in asymmetric versions of the Battle of the Sexes, where long-term fairness requires

more complex turn-taking strategies. We decided to employ these two arguably more nuanced

and complex games because we anticipated that differences in academic performance would more

strongly reflect variations in behavior.

This study contributes to the literature in three ways. First, it addresses unanswered ques-

tions about how cognitive and social skills related to academic achievement influence coordination

performance. Second, it provides empirical evidence linking academic success to broader strate-

gic abilities, such as forward-thinking and cooperation. Third, it opens new avenues for research

by emphasizing the need to disentangle the specific mechanisms underlying coordination, such as

problem-solving, attention, and social reasoning.

2 Methods

Population. We recruited 132 children from 6th, 7th and 8th grade in Thomas Starr King Middle

School (KING), a public school in Los Angeles. The study was conducted with the University of

Southern California IRB approval UP-12-00528. We distributed consent forms to parents through

the school administration with an opt-out option. Students’ main ethnicities at KING are Latino

(55%), White (20%) and Asian (12%). Families are of very low socioeconomic status, with 75% liv-

ing at or below the national poverty level. Only a minority of these students go to college. Students

in the school are divided in four tracks: honors, regular, at risk, and special education. “Honors

students” are high academic achievers as identified by the school. They are grouped in advanced

classes whenever possible, and pooled with “regular students” otherwise. “Special education stu-

dents” are individuals with special needs such as dyslexia or attention deficit. They typically have

low academic performance due to their difficulty to follow the standard curriculum combined with

the school’s inability to give personalized education (despite their different needs, all special ed-

ucation students are grouped together due to budget shortages). Finally, “at risk students” are

individuals with low academic performance and sometimes in-class problems of discipline. They

are usually in the same class as regular students but occasionally they are pooled with special

education ones. For power considerations, we grouped students in 2 tracks: ‘honors’ and ‘regular’

students are pooled in the High academic performance track (28, 35 and 8 students in 6th, 7th

and 8th grade, respectively) whereas ‘at risk’ and ‘special education’ students are pooled in the
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Low academic performance track (21, 19 and 21 students in 6th, 7th and 8th grade, respectively).

Games. Participants were anonymously paired. In half the sessions, participants were assigned

a color (red or green) and played the same asymmetric battle-of-the-sexes game (aBS) with the

same partner for 18 rounds (which, following Dal Bó and Fréchette (2018), we call a “supergame”).

They then changed partners and colors and played the same 18-round supergame again. After that,

they were assigned new colors (blue or yellow) and played two hawk-dove (HD) supergames, again

with a fixed 18-round termination rule, and with change of partners and colors between the two

supergames. In the other half of sessions, rules were identical except that the order was reversed

(two HD supergames followed by two aBS supergames). Table 1 describes the payoff matrix of

each stage game with the points used in the experiment (labels and notations will become clear

later).

aBS

green player

red (Yg) green (Mg)

red red (Mr) (6,2) (1,1)

player green (Yr) (1,1) (2,4)

HD

yellow player

in (Ry) out (Sy)

blue in (Rb) (2,2) (5,3)

player out (Sb) (3,5) (3,3)

Table 1: Payoff matrix of asymmetric battle of the sexes aBS and hawk-dove HD games

Grouping. For logistics reasons related to the availability of classrooms, teacher schedules,

and students, we could not exclusively form homogeneous pairs. The experiment thus consists

predominantly of pairs with two High (47%) or two Low (40%) academic achievers, but there is

also a small fraction of Mixed pairs (13%). All pairs consist of participants in the same grade.

Presentation. It was of paramount importance to provide a simple, graphical representation of

the game that all participants could easily understand, independently of their intellectual ability.

This way, differences in behavior cannot be attributed to misunderstanding or confusion. Figure 1

presents screenshots of the two games with the narrative used in the experiment.

Duration and payments. The experiment consisted of two games: a short lying game analyzed in

a different paper (Brocas and Carrillo, 2021b) and the present study. To avoid cross-contamination,

we did not communicate the results of the first game until the end of the second. The experiment

never exceeded one school period (50 minutes) including instructions and payments. Participants

accumulated points that were converted into money at the rate of 3 cents per point. Since the school

does not allow cash on premises, participants were paid immediately after the experiment with an

Amazon e-giftcard sent to their school email. Incentives were high: average payment over the two

games was $11.90, which is significantly more than typical experiments with school children. A

copy of the instructions is included in Appendix A1. The data, full instructions, oTree software

and its code are all available in our GitHub page https://github.com/labelinstitute/dev DM

under the folder “Coordination & Academic Achievement”.
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(a) aBS screenshot (b) HD screenshot

Figure 1: Experimental design. (a) aBS “Find the Balance” game. Players have a role, red or green
(here, red). They each possess a scale with their own color and a ball, which they simultaneously place on
one of the scales (dotted circles for own choice and “?” for the partner’s choice). If both participants place
their balls on the same scale, the scale is balanced and both earn 2 points. Furthermore, the owner of the
scale gets an additional 2 points (if green) or additional 4 points (if red), thus generating an asymmetry in
the coordination payoff. If players place their balls on different scales, the scales are unbalanced, yielding
only 1 point to each. (b) HD “Risky Stars” game. A blue and a yellow player (here, blue) possess a star
and simultaneously decide whether to place it on or outside a common carpet (dotted stars). Placing the
star outside the carpet gives 3 points for sure. Placing it on the carpet gives 2 points if the other player
also places their star on the carpet and 5 points if the other player places their star outside the carpet. For
both games, the right column populates the past choices of both players. It allows participants to easily
track the history of outcomes and their payoffs in the supergame (here, the first four rounds).

Theory. Repeated coordination games with multiple equilibria of the stage game are particularly

interesting to study empirically because theory has very limited predictive power. Indeed, according

to the limit perfect “folk theorem”, any feasible and individually rational payoff vector of the stage

game is achievable in the finitely repeated game as the finite time horizon gets sufficiently large

(Benoit and Krishna, 1985).1 At the same time, some strategies are more natural and intuitive,

and may lead to higher payoffs than others.

For the aBS stage-game, we call Mi the choice by player i ∈ {r, g} (red or green) of ‘My’

favorite action (red scale for red player and green scale for green player) and Yi the choice of

‘Your’ favorite action (green scale for red player and red scale for green player). For the HD

stage-game, we call Ri and Si the choice by player i ∈ {b, y} (blue or yellow) of the ‘Risky’ and

‘Safe’ actions, respectively (see Table 1). Both are two-player coordination games with two pure

strategy Nash equilibria–(Mr, Yg) and (Yr,Mg) in aBS and (Rb, Sy) and (Sb, Ry) in HD– and one

mixed-strategy Nash equilibrium. Each player prefers a different equilibrium, and their payoff in

the mixed strategy one is strictly (aBS) or weakly (HD) lower than in either of the pure strategy.

aBS captures situations where players have a common goal (a research joint venture, a new

legislation) but conflicting preferences on how to achieve it (who invests the most, which provision

to compromise). HD captures situations where countries at war, competing firms and parties in

a negotiation can adopt aggressive or accomodating strategies, with the former yielding highest

1This contrasts with stage games that have a unique equilibrium (such as the prisoner’s dilemma) where indefinite
repetition is necessary to apply the folk theorem.
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payoffs only if the rival adopts the latter.

For the repeated game version, we call Simple Efficient Outcome (SEO) the strict alternation

between the two equilibria of the stage game: (Mr, Yg), (Yr,Mg), (Mr, Yg), ... in aBS and (Rb, Sy),

(Sb, Ry), (Rb, Sy), ... in HD. The idea can be summarized as “let’s choose first your favorite

outcome and then mine”. Achieving tacit coordination has added difficulties in these games,

compared to the more commonly studied symmetric battle of the sexes and stag-hunt games

(Brocas and Carrillo, 2023). Indeed, the red and green players in aBS obtain different average

payoffs under pure alternation (4 and 3, respectively). This is likely to be perceived as unfair, and

make the outcome non-focal. Similarly, by choosing always Si, a player in HD can avoid risks and

secure a payoff of 3 that does not depend on the willingness or ability of the rival to cooperate.2

3 Results

3.1 Aggregate outcomes and payoffs

To study the performance of our participants, we present in Figure 2 the proportion of equilibrium

outcomes (likelihood of playing one of the pure strategy Nash Equilibria) and the resulting average

payoffs for each track and game, combining both supergames.3 The first measure identifies whether

individuals succeed in dynamically coordinating their actions. The second measure allows us to

quantify the monetary cost of miscoordinations. In what follows, and unless otherwise stated, we

perform simple two-sided t-tests for mean comparisons.
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Figure 2: (a) Proportion of equilibrium outcomes in aBS ((Mr, Yg) and (Yr,Mg)) and in HD ((Rb, Sy)
and (Sb, Ry)) for each track (High achievers, Mixed pairs and Low achievers). (b) Average per-round
payoff in aBS and HD for each track. In both figures, behavior of a random player is represented in pink.

2By construction, any outcome where individuals play one of the pure strategy Nash equilibria in every stage is
efficient and yields average payoffs in the Pareto frontier. SEO is only a natural outcome on which participants are
likely to coordinate. If players wanted to reach the efficient and fair outcome in aBS (same average payoff for both
players), they would need to play (Yr,Mg) twice as often as (Mr, Yg).

3As the regression analysis will demonstrate, there are no significant differences between both supergames so we
combine them to increase statistical power.
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These games prove challenging for our middle school participants. Under random behavior,

we would observe 50% equilibrium outcomes with average payoffs of 2.25 in aBS and 3.25 in HD

(pink horizontal lines). Conversely, perfect coordination on SEO would result in 100% equilibrium

outcomes, with average payoffs of 3.5 and 4, respectively. Participants in the High track perform

significantly better than random in both games, with equilibrium probabilities of 0.60 in aBS and

0.70 in HD (p < 0.01), though far from SEO. Their payoff is very significantly higher than random

in aBS, but only by a small margin (2.50 vs. 2.25, p = 0.008). Meanwhile, the Low track is not

statistically different from random performance, in terms of either outcomes or payoffs.4

We generally observe highly significant differences between High and Low tracks in both equi-

librium outcomes (0.60 vs. 0.45 in aBS, p = 0.006, and 0.70 vs. 0.52 in HD, p = 0.001) and payoffs

(2.50 vs. 2.11 in aBS, p = 0.003, and 3.45 vs. 3.11 in HD, p = 0.002). This provides our first

indication that academic achievement is a strong predictor of performance in coordination games.

We next examine the outcome dynamics. Figure 3 illustrates the evolution from round 1

to round 18, in the proportion of groups that successfully coordinate on an equilibrium, again

combining data from both supergames.
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Figure 3: Evolution in average proportion of equilibrium outcomes from round 1 to round 18 of a
supergame in (a) aBS and (b) HD separated by track. The best fit trend is represented in pink.

Consistent with Figure 2a, equilibrium play is more prevalent in the High track than in the

Low track, with the Mixed track falling somewhere in between. Additionally, the slope β of

the coordination trend across rounds within a supergame is positive and significant in the High

track (β̂1
H = 0.008, p = 0.019 in aBS and β̂2

H = 0.015, p < 0.001 in HD). This corresponds

to an estimated increase in coordination of 14.4% in aBS and 27.0% in HD between the first

and last round of a supergame. In contrast, the Low track exhibits greater variability and no

significant trends (β̂1
L = 0.006, p = 0.15 in aBS and β̂2

L = 0.004, p = 0.21 in HD). To compare

the slopes between High and Low in each game, we combined the datasets and ran a regression

with an interaction term between the round number and a dummy variable indicating the track.

4The behavior of the Mixed track looks comparable to High but statistical inferences are difficult to make due
to the low number of observations (16 or 18 depending on the game).
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The significance of the interaction term tests whether the difference in coefficients is statistically

significant. We found that it was different at p < 0.001 in both aBS and HD. Finally, inferences

in the Mixed track are challenging due to the limited number of observations.

Figure 4 extends the analysis of average payoffs by examining the earnings of each pair of

players in the game.
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Figure 4: Average payoffs over all rounds of a supergame in (a) aBS and (b) HD by track. Dots
correspond to pairs of players. Size of a dot is proportional to number of pairs with that payoff combination.
The area inside the black lines represents the set of achievable expected payoffs in the game, with the
rightmost segment (from (2,4) to (6,2) in aBS and from (3,5) to (5,3) in HD) marking the Pareto frontier.

Again consistent with Figure 2b, there is a significant difference in payoffs between the High

and Low tracks. Let’s define min as the vector of payoffs that can be easily secured by the players:

(2,2) in aBS (achieved by each player coordinating on the rival’s preferred outcome) and (3,3) in

HD (achieved by consistently choosing the safe action). The proportion of outcomes where both

players in the pair fall below min is 0.22 in aBS and 0.17 in HD for the High track, compared

to 0.38 in aBS and 0.35 in HD for the Low track. These proportions are marginally statistically

different (test of comparison of proportions, p = 0.08 in aBS and p = 0.05 in HD). Conversely,

let’s define max as the vector representing 90% of the payoff under SEO: (3.7, 2.8) in aBS and

(3.8, 3.8) in HD. The proportion of outcomes where both players in the pair weakly exceed max

is 0.17 in aBS and 0.29 in HD for the High track, compared to only 0.02 in aBS and 0.02 in HD

for the Low track. These proportions are significantly different (test of comparison of proportions,

p = 0.02 in aBS and p < 0.001 in HD). Overall, while there is large heterogeneity in behavior

within each track, the payoff gap between the High and Low tracks is considerable.

Notice that no pair of players in aBS achieves or approaches the efficient and fair outcome, as

described in footnote 2 (10/3, 10/3). Achieving such coordination likely demands both very high

sophistication and a strong belief that the partner is also very sophisticated. By contrast, 13% of

pairs in HD coordinate on or near the equilibrium preferred by one player. Such acceptance of an

inequitable outcome is unusual in the literature.

Last, in Table 2, we conduct OLS regressions to analyze the determinants of performance.
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Eq. outcomes Total payoffs
aBS HD aBS HD

(const.) 10.1∗∗∗ 11.5∗∗∗ -1.60 42.66∗∗

(1.00) (1.05) (13.89) (14.63)
Mixed 2.39◦ 0.54 8.35∗∗ 1.84

(1.38) (1.38) (2.93) (3.40)
High 1.64◦ 2.30∗ 6.70∗∗ 4.54◦

(0.93) (0.97) (2.12) (2.38)
HD1st -2.90∗∗ -2.80∗∗ -5.69∗∗ -5.15∗∗

(0.88) (0.91) (1.96) (1.97)
Second 0.28 -0.21 0.40 -0.88

(0.83) (0.86) (1.63) (1.09)
Red — — 9.43∗∗∗ —

(1.61)
Age — — 0.25∗∗ 0.12

(0.09) (0.10)
Male — — 1.36 -2.73

(1.88) (2.08)
Siblings — — -1.23 0.24

(2.53) (4.23)

Adj. R2 0.12 0.12 0.21 0.09
Num. obs. 132 132 262 262
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1

Table 2: OLS regressions to determine the effect of track (Low is the reference), order of play (HD1st is
a dummy for participants who start with the HD game), supergame (Second is a dummy for the second
time they play the same supergame), role (Red is a dummy for red players in aBS) and demographics
(age, gender, siblings) on the outcome and payoff of players in aBS and HD.

As previously documented, High achievers (and to a lesser extent, Mixed pairs) tend to play at

equilibrium more frequently and obtain higher payoffs than Low achievers, the reference group in

the regression. There is no significant behavioral difference between the first and second supergame

of either game (variable Second), validating our decision to pool the supergames for the aggregate

analysis. Also, given the payoff asymmetry in the battle of the sexes and the lack of coordination on

fair equilibria, players in the red role earn significantly higher payoffs than those in the green role

(variable Red). Age shows a significant effect only in aBS, which could be due to the narrow age

range in our sample. Gender and having one or more siblings do not appear to impact performance.

The most puzzling finding is the negative effect of starting with HD on performance and

earnings in both games. While the reason for this outcome is not immediately clear, it could be

that starting with HD leads to increased complexity or strategic confusion that carries over into

subsequent gameplay.
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3.2 Individual analysis

We next analyze behavior at the individual level. We consider a very extensive range of strategies

that players could plausibly employ, and retain those that are empirically most frequent. A detailed

explanation of our classification method can be found in Appendix A2.

The strategies most commonly used by our participants are the same across both games and

are among the simplest we considered. (i) Tit-for-tat (tft): replicate the action of the partner

in the previous round; (ii) Alternate (alt): alternate between the two actions; and (iii) Favorite

(fav): always choose the action that yields highest payoff provided the partner accommodates

(Mi in aBS, Ri in HD). After categorizing players’ strategies separately for the first and second

supergames to account for potential behavioral changes across games, we show that, with only these

three strategies, we classify 74% of decisions in aBS and 66% in HD. Each additional strategy

contributes only marginally to the classification, so we do not include any other. Instead, we group

the remaining 26% and 34% of players in the other category.

Identifying a player’s strategy within a single supergame is challenging, as we lack the counter-

factual of what the player would have done if the partner had played differently. Fortunately, the

overlapping of strategies is, in that respect, highly revealing. Indeed, an individual classified as

both alt and tft (alt&tft) is someone who alternates between actions but also plays the action

opposite to their rival in every round. Such a person achieves the SEO. In contrast, someone who

is only alt or only tft is strategic but fails to reach the SEO. On the other hand, an individual

classified as both fav and tft (fav&tft) indicates that both they and their partner consistently

choose their favorite action, which leads to miscoordination and low payoffs. By contrast, someone

classified only as fav might be coordinating sometimes (or often) on their favorite outcome.

Table 3 displays the number of participants classified under each strategy (including the over-

lapping ones) together with their average fraction of equilibrium behavior and their average payoff.

alt&tft tft alt fav fav&tft other
Efficient Strategic Inferior Unclassified SEO random

aBS # obs. 41 42 21 64 27 69 – –
% eq. 0.92 0.70 0.73 0.36 0.12 0.51 1.0 0.50
ave. payoff 3.26 2.74 2.72 2.16 1.22 2.11 3.5 2.25

HD # obs. 49 21 23 60 20 91
% eq. 0.96 0.64 0.66 0.47 0.34 0.57 1.0 0.50
ave. payoff 3.93 3.44 3.48 2.82 2.68 3.31 4 3.25

Table 3: Number of individuals, average proportion of equilibrium choices and average payoffs under
each strategy (including overlapping ones) in aBS and HD. Equilibrium and payoffs under the SEO and
random choice are provided for reference.

The distribution of behavior is similar across games. Participants employ either strategies that

are forward-looking and conducive to high average payoffs (Efficient and Strategic) or strategies

that are mostly myopic and conducive to low average payoffs (Inferior and Unclassified).
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Of the 264 observations in each game, around 15%-20% fall under alt&tft, an Efficient

strategy that yields a very high fraction of equilibrium outcomes and an expected payoff close to

SEO. Approximately 20%-25% of choices are classified as either alt or tft, which are Strategic

choices. These strategies result in high payoffs, but below SEO due to systematic deviations by

players. Then, there are 30%-35% of self-centered choices, classified as either fav or fav&tft.

These strategies rarely achieve coordination (especially the latter one). They lead to Inferior

outcomes, with payoffs below the random benchmark. For the remaining 25%-35% of choices, a

clear strategy is hard to discern, so we categorize them as Unclassified. These individuals obtain

payoffs around the random outcome. They incur notable losses, though not as severe as those

employing self-centered strategies.

Figure 5 presents the distribution of these four types of strategies by game and track.
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Figure 5: Distribution of individual strategies, Efficient (alt&tft), Strategic (alt or tft), Inferior
(fav or fav&tft) and Unclassified (other) by game (aBS and HD) and track (High, Mixed, Low).

Consistent with previous findings, we observe a sharp overrepresentation of Efficient choices

among High achievers and Inferior choices among Low achievers in both games. Strategies are

more challenging to classify in the Mixed track, and in HD compared to aBS.

Overall, performance is highly heterogeneous, sometimes suboptimal, but typically better in

the High and Mixed tracks than in the Low track, with choices closer to equilibrium and higher

payoffs. We performed Probit regressions to study in more detail the determinants of individual

strategy choices. The results are presented in Appendix A3, and they support the findings of

Figure 5. High achievers and Mixed groups are significantly more likely to adopt the Efficient

strategy and significantly less likely to choose the Inferior strategy compared to Low achievers.

4 Discussion

This study contributes to the literature on coordination games by examining how academic achieve-

ment influences strategic behavior and coordination among middle schoolers in complex repeated-
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game settings, such as the asymmetric Battle of the Sexes (aBS) and the Hawk-Dove (HD) games.

Academic achievement and coordination. A central finding of the study is the strong positive

link between academic achievement and performance. On average, High achievers outperform Low

achievers. They are more likely to obtain superior outcomes from the outset and they also improve

their coordination over the course of the supergame. This implies that academic achievement

may reflect not only domain-specific knowledge but also broader cognitive skills, such as problem-

solving, anticipation, and the ability to model others’ behaviors—skills that are crucial not only

for successful coordination in the game, but also for navigating through life. Conversely, Low

achievers struggle with coordination which results in significant payoff losses. They do not exhibit

significant trends over the course of the supergame. This gap in performance between High and Low

achievers aligns with previous research suggesting that individuals with stronger cognitive skills

tend to perform better in tasks requiring forward-thinking and strategic interaction (Proto et al.,

2019, 2022; Fe et al., 2022). A major strength of this study is its ecological validity in evaluating

cognitive skills, as it avoids reliance on abstract tasks testing narrow abilities. Instead, it uses

a single measure—academic achievement—that reflects the cumulative effect of skills developed

through long-term learning. However, we recognize that this choice also presents a limitation:

academic achievement is a composite measure that aggregates multiple underlying skills, such as

problem-solving, anticipation, and social reasoning. This breadth makes it challenging to isolate

the specific mechanisms responsible for the observed differences in coordination ability. Despite

this limitation, our findings emphasize the broader relevance of academic success in understanding

strategic coordination and underscore its value as an ecologically valid predictor of performance in

complex environments.

Strategy selection and behavior. The most successful participants use simple yet effective strate-

gies that allow for efficient coordination: tit-for-tat and alternation of actions. These strategies are

particularly prevalent among High achievers, who demonstrate a stronger ability to adopt them.

In contrast, the prevalence of self-centered strategies, such as consistently choosing one’s favorite

action, is much higher among Low achievers, resulting in miscoordination and low payoffs. Relying

on these uncooperative strategies suggests a difficulty to adapt to the strategic environment, further

exacerbating the performance gap. It is also consistent with the existing literature which shows

that poor performers in strategic games are typically individuals who focus primarily on salient,

self-centered information (Costa-Gomes et al., 2001; Johnson et al., 2002; Devetag et al., 2016).

Future research should explore the link between academic performance and limited attention to

better understand the causes of the observed performance gap.

Heterogeneity. A second key finding of the study is the substantial heterogeneity within tracks,

thus providing a nuanced view of how academic achievement influences strategic behavior. While

High achievers generally outperform Low achievers, not all consistently play optimally, and some

Low achievers occasionally demonstrate sophisticated thinking abilities that lead to efficient out-

comes. This highlights the complexity of decision-making, where factors beyond academic per-

formance—such as experience, risk-attitudes, social preferences and theory of mind—play a role.
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This heterogeneity has been observed in young children and has been shown to persist over time

in other strategic contexts (Brocas and Carrillo, 2021a). High achievers may benefit from more

challenging tasks that deepen strategic thinking, while Low achievers might need foundational

support in trust-building and cooperation. Tailored interventions and opportunities could help

improve outcomes for those who struggle with coordination tasks.

Performance in mixed pairs. An intriguing aspect of the study is the performance of the

Mixed group. These pairs show intermediate performance (closer to High than to Low achievers),

suggesting that Low achievers benefit from interacting with High achievers, who likely provide

guidance that improves coordination. This aligns with research on peer learning, where exposure

to more advanced peers promotes cognitive development (Hmelo-Silver, 2013). Although it is

based on a small sample, this finding suggests that pairing Low achievers with High achievers can

enhance performance in educational settings. Further research is needed to explore the dynamics

of these interactions and optimize their benefits.

Inequity. One surprising finding is the prevalence of inequitable outcomes by participants, par-

ticularly in HD, where around 13% consistently coordinate on outcomes favoring their partner

at their own expense but also in aBS, where coordination on efficient and fair outcomes is non-

existent. This contrasts with the common expectation of inequity aversion, with people typically

resisting unequal payoffs, even at personal cost (Fehr and Schmidt, 1999). Several factors could

explain this behavior. Younger individuals may be less sensitive to inequity or prioritize maintain-

ing cooperation over fairness. The dynamics of HD, where one strategy involves a smaller but

safe payoff, might also lead players to view these outcomes as acceptable, even if inequitable. An

alternative explanation could be that our participants are inequity averse but find it difficult to

identify a way to achieve outcomes that are both efficient and fair. Further research could explore

how factors like communication, stakes or environmental complexity influence inequity tolerance

and whether this behavior persists into adulthood.

Order of games and behavior. Starting with the Hawk-dove game negatively impacts perfor-

mance in both games. One possible explanation is psychological priming: HD involves conflict,

which may prime participants for competitive behavior. Risk-aversion may also play a role, as

HD encourages safe, cautious strategies that do not translate well into aBS. Finally, emotional

responses from the conflict in HD—such as frustration or distrust—could linger, impairing trust

and cooperation in subsequent games. In summary, the observed order effect likely arises from

a mix of cognitive, emotional, and strategic factors. Further research could explore how these

elements interact to affect performance.

Education. A natural question would be to investigate how interventions aimed at improving

strategic thinking and coordination skills might mitigate the documented performance gap. Under-

standing whether targeted training can improve outcomes of Low achievers could have important

implications for educational practices. Also, Mixed groups generally outperform Low groups. This

suggests that offering opportunities for collaborative learning and problem-solving may be a way

for educators to help support students who struggle with strategic thinking.
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Limitations. While this study provides valuable insights into the relationship between academic

achievement and coordination performance, there are several limitations worth noting. First, the

study is restricted to middle school students, which may limit the generalizability of the findings to

other age groups. Additionally, the study does not explore the specific cognitive or social factors

that drive the performance differences between High and Low achievers. Future research could

benefit from examining the role of specific cognitive abilities, such as working memory, cognitive

flexibility, or theory of mind, in shaping coordination behavior to provide a clearer understanding

of the processes at play.
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SI. Appendix

Appendix A1. Sample of instructions

Hi, my name is , and these are my helpers [Introduce helpers]. Today, we are going to play a
few games with you. In all the games, you will earn points that will be placed in your virtual wallet. At
the end of the experiment you will be paid 3 cents for each point you obtained with an Amazon gift card.
You will get several hundred points, so you will be able to get a nice gift card. Are you excited?

Risky stars

You are going to play a game called “Risky stars” with one other person in the room. The computer
will decide with whom you play that game. One of you will be blue and the other will be yellow. The
computer also decides who is blue and who is yellow. If you are blue, your screen looks like this. A
visualization of all the slides is provided in Figure 6

[SLIDE 1]

At the top of the screen, it says you are blue. In the middle of the screen there is a carpet divided in
two. You own the blue star. You need to decide whether to put your star on the carpet or outside the
carpet. If you are yellow, your screen looks like this.

[SLIDE 2]

It says you are yellow at the top and you see the same carpet as your partner. You own the yellow
star and you need to decide whether to put your star on the carpet or outside the carpet. Here you can
see the screen of blue and the screen of yellow.

[SLIDE 3]. Now, how do you get points?

[SLIDE 4]

If you put your own star outside the carpet, you get 3 points, no matter what your partner does. If
you put it on the carpet, what you get depends on what your partner does. If he also puts his star on the
carpet, neither of you fits well and you both earn 2 points. But if he puts it outside the carpet, then you
have all the space for yourself and you earn 5 points (while he earns 3 points for being outside the carpet).
This information will remain here [point] during your choices.

Now, this is very important. You are going to play many times with the same partner. Each time, you
will make your choices at the same time. This means that you will not know what your partner did when
you make your choice. It is only after both of you have made a choice, that you will both know what each
of you did and how many points you got. This will appear in the right column of your screen.

[SLIDE 5]

For instance, this is what your screen may look like after 4 rounds. [explain what happened in the
first, second, and third round ...]. You have accumulated a total of 12 points so far, but you are going to
play many more rounds.

OK. The computer will now select partners. The points you get depending on where the stars are
placed will remain visible on the big screen [go back to SLIDE 11]. When you are ready, make your
choices. Just tap on the screen where you want to place your star.

[After supergame 1] The game has ended. You can see on your screen the points accumulated. The
computer will now select new partners and you will play the same game again. You may have the same
role as before but note that it does not matter since the points are the same for both colors.

[After supergame 2] The game has ended. You can see on your screen the points accumulated.

16



Find the balance

You are going to play with one other person in the room a game called “Find the balance”. As before,
the computer will decide with whom you play this game. One of you will be red and the other will be
green. The computer decides who is red and who is green. If you are red, your screen looks like this.

[SLIDE 6]

At the top of the screen, it says you are red. You own the red scale and the black ball in the middle
of your screen. You can also see a green scale, which belongs to your partner. You need to decide whether
to put your ball on the dotted circle of your red scale or on the dotted circle of your partner’s green
scale. If you are green, your screen looks like this.

[SLIDE 7]

It says you are green at the top. You own the green scale and the black ball in the middle of your
screen. You can also see a red scale which belongs to your partner. You need to decide whether to put
your ball on the dotted circle of your green scale or on the dotted circle of your partner’s red scale. Here
you can see the screen of red and the screen of green.

[SLIDE 8]. Now, how do you get points?

[SLIDE 9]

If both balls are put on the red scale, the scale is balanced. Player red gets 6 points and player green
gets 2 points. If both balls are put on the green scale, then the scale is again balanced. Player red gets
2 points and player green gets 4 points. If the balls are put on different scales, the scales are unbalanced.
The balls fall and each player gets only 1 point. This information will remain here [point] during your
choices.

Notice that red gets more points when both balls are on the red scale than the points green gets
when both balls are on the green scale. Now this is very important. You will play many rounds with the
same partner. In each round, you will make your choices at the same time. This means that you will not
know what your partner did when you make your choice. However, after both of you have made a choice,
you will both know what each of you did and how many points you got. This will appear in the right
column of your screen.

[SLIDE 10]

For instance, this is what your screen may look like after 4 rounds. [explain what happened in the first,
second, and third round ...]. You have accumulated a total of 15 points so far, but you are going to play
many more rounds. All right, are you ready to play? The computer will now select partners. The points
you get depending on where the balls are placed will remain visible on the big screen [go back to SLIDE
16]. When you are ready, make your choices. Just tap on the screen where you want to place your ball.

[At the end of the 1st game] The game has ended. You can see on your screen the points you have
accumulated. The computer will now select new partners and you will play the same game again. If you
were red before, you will be green and if you were green you will be red. Remember the game is the
same, but your color role is different and your partner is different.

[At the end of the 2nd game] The game has ended. Please answer a few questions and we are done.

Payments. We will now call you one by one and tell you how much money you earned. You can tell
your friends how much you got or not. It is totally up to you. You will get today an email from Amazon
with an amazon e-giftcard for that amount. If you don’t receive it, please let us know. Thanks for playing
with us!
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Figure 6: Slides to accompany instructions
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Appendix A2. Methodology to determine individual strategies

We investigate individual heterogeneity by classifying our participants according to their strategy in
each supergame. We employ the following methodology. For each supergame, we study the 15 choices in
rounds 4 to 18. We assume that choices in rounds 1 and 2 are explorations and therefore do not consider
them. We use the outcome in round 3 as the anchor (initial condition) for the strategy, and consider a large
number of possible strategies. We assign to each player the strategy for which the number of deviations in
rounds 4 to 18 is smallest, as long as it is no greater than 3. If the number of deviations is the same for two
or more strategies, the subject is classified at the intersection. Players with more than 3 deviations from
all the strategies remain unclassified. There are only minor variations in results if we use rounds 2 or 4 as
anchor and/or if we allow 2 or 4 deviations. In the analysis, the subject’s initial choice is left unspecified
for some strategies. This is not theoretically rigorous but is consistent with using round 3 as the anchor
of the empirical analysis.

As mentioned above, the behavior of a player in a supergame may be compatible with several strategies.
With a large number of supergames, one could disentangle between strategies by studying the behavior
against different partners, adapting some of the sophisticated techniques developed in the repeated pris-
oner’s dilemma literature.5 Such analysis is not possible with only two supergames. Our best approach
is to study overlaps of strategies as we discuss in the text. Also, we allow for different strategies across
supergames because we expect some participants to change their behavior between the first and second
time they play.

Strategies in aBS

SEO in aBS consists in alternating between the two Nash Equilibria: (M t
r , Y

t
g ), (Y t+1

r ,M t+1
g ), (M t+2

r , Y t+2
g ),

etc. (where we use the superscript t for round t). We are interested in strategies that can help sustain
SEO, but also in strategies that may be chosen intuitively even though they do not result in SEO. Table 4
reports some possible strategies from simplest to most sophisticated.

strategy description

(1) fav play always M t
i

(2) your play always Y t
i

(3) alt alternate between M t
i and Y t

i

(4) tft tit-for-tat: replicate the action of the partner in the previous round
(5) trig grim-trigger: play the action consistent with SEO if all past outcomes

are consistent with SEO and play M t
i forever otherwise

(6) 2tft two-tit-for-tat: alternate between playing once the red equilibrium and twice the green one
(7) rev reverse tit-for-tat: reverse the choice of the partner in the previous round
(8) forg forgiving trigger: play M t

i unless the last round outcome was (M t−1
i , Y t−1

j )

(9) teach play Y t
i unless the last round outcome was (Y t−1

i ,M t−1
j )

(10) test play M t
i unless the last round outcome was (Y t−1

i ,M t−1
j )

Table 4: Some simple strategies in aBS

Strategies (1)-(2)-(3) can be played by näıve players with little understanding of the partners’ incentives
as well as by strategic players whose objective is to reach an equilibrium (insisting on the best possible
for themselves, agreeing on the best for the partner, or targeting the SEO, respectively). Strategies (4)-
(5) are typical in other games and may result in SEO but also collapse into (Mr,Mg) depending on the

5For example, Camera et al. (2012) trades-off goodness of fit and number of strategies, Aoyagi and Fréchette
(2009) conduct Maximum Likelihood Estimation of best fitting strategies and Romero and Rosokha (2019) perform
a direct elicitation of strategies.
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partner’s behavior. Strategy (6) is special to this asymmetric game since it could result in the efficient and
fair equilibrium, where both players obtain the same expected payoff in the Pareto frontier. Strategy (7)
seeks to repeatedly coordinate in the same static Nash equilibrium (either always exploiting the partner
or always giving-in). The remaining strategies capture a variety of strategic behaviors: (8) is similar to
(5) except that it forgives after one period, (9) attempts to teach SEO by playing Y after a deviation, and
(10) is the opposite of (9) and similar to (7), in that it attempts to exploit partners but gives in to selfish
ones.

Choosing how many strategies to include can be delicate and subjective. In this case, however, it was
reasonably simple. Indeed, with only three strategies–fav, alt, and tft–we can account for the choices
of 73.9% of observations. Adding test (the most employed of the remaining ones) would increase the
proportion of choices accounted to only 75.8% while including all 10 strategies would classify a total of
80.3%. Keeping only fav, alt, and tft thus seemed a good compromise (note in particular that we do
not observe a single instance of the efficient and fair strategy 2tft).

Strategies in HD

SEO in HD consists also in alternating between the two Nash Equilibria: (Rt
b, S

t
y), (St+1

b , Rt+1
y ), etc.

In fact, and despite some important differences between the two games, the different types of behaviors are
similar in the two cases. We therefore decided to consider the exact same potential strategies as in aBS
(Table 4), except that we replace Mi with Ri (the action that could potentially lead to highest payoff) and
Yi with Si (the choice that most closely yields to the opponent’s favorite choice). We also did not consider
strategy (6), since it had no meaning in the symmetric HD (it was not selected by anyone anyway).

Once again, the selection of the strategies to retain was reasonably simple. With the same three
strategies as before–fav, alt, and tft–we can account for the choices of 65.6% of observations. Adding
teach would increase the proportion of choices accounted to 69.7% while including all 9 strategies would
classify 72.3%. We ultimately decided to keep only fav, alt, and tft because they were the same as in
the other game. Besides, teach was not the fourth most employed strategy in aBS and it only added
4.1% of classified observations.

Appendix A3. Probit regressions on individual strategies

We present in Table 5 Probit regressions to study the determinants of individual strategy choices, using
the same variable as in Table 2.

In support of previous results, we find that High achievers are significantly more likely to select the
Efficient strategy and significantly less likely to select the Inferior strategy than Low achievers. A similar
effect is found for the Mixed group. Age is the only demographic variable that has a (minor) effect, and
only in HD. As in Table 2, we obtain the puzzling result that individuals who start with HD perform
worse in both games. The only novel finding is that, contrary to previous results, there is a noticeable
improvement in the likelihood of playing the Efficient strategy between supergames 1 and 2 in both games.
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aBS HD
Prob. Efficient Prob. Inferior Prob. Efficient Prob. Inferior

(const.) -3.41 2.16 -3.08 3.60∗

(2.11) (1.67) (2.76) (1.65)
Mixed 1.05∗∗ -0.74∗ 0.67 -0.67◦

(0.39) (0.35) (0.61) (0.37)
High 1.31∗∗∗ -0.52∗ 1.78∗∗∗ -0.87∗∗∗

(0.35) (0.23) (0.45) (0.24)
HD1st -0.36 0.89∗∗∗ -2.35∗∗∗ 0.87∗∗∗

(0.28) (0.23) (0.42) (0.25)
Second 0.47∗ -0.01 0.74∗∗∗ 0.20

(0.19) (0.14) (0.20) (0.14)
Red -0.14 -0.23 — —

(0.18) (0.14)
Age 0.01 -0.02 0.01 -0.03∗

(0.01) (0.01) (0.02) (0.01)
Male 0.29 -0.14 -0.01 0.33

(0.25) (0.20) (0.29) (0.23)
Siblings 0.20 0.08 0.18 -0.45

(0.33) (0.32) (0.43) (0.29)

Adj. R2 207.0 303.5 152.2 268.9
Num. obs. 262 262 262 262
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1

Table 5: Probit regressions to determine the effect of track, order of play, supergame, role and demo-
graphics on the likelihood of playing Efficient and Inferior strategies in aBS and HD.

21


	1 Introduction
	2 Methods
	3 Results
	3.1 Aggregate outcomes and payoffs 
	3.2 Individual analysis

	4 Discussion

