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Abstract

How is consensus reached in groups and committees with limited access to information?
To determine the fundamental attributes that support consensus building, we run a
controlled laboratory experiment with very young children (5 to 8 years old). Two
characteristics emerge as key for the success of a group. First, the endogenous adoption
of complementary roles by different individuals: a leader who moves first and proposes
a solution, a group of debaters who ponder over the alternatives, and a closer who
patiently waits and locks the decision. Second, a degree of flexibility in the decision
rule: consensus is achieved when participants follow the wisdom of the crowd with
high probability but not with certainty. Comparing empirical choices with simple
algorithms, we observe that while algorithms broadly capture behaviors, children’s role
heterogeneity and choice flexibility allows them to outperform simple computational
models, particularly in the more complex conditions. From a developmental viewpoint,
the study also reveals a sharp progression within our window of observation, with
older children reaching near-perfect consensus rates. Overall, this work contributes to
understanding developmental milestones in decision-making, providing a foundation
for future investigations into how children navigate complex social environments.
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The ability to coordinate actions toward a shared goal is essential for success across

economic and social activities. In the workplace, effective coordination boosts team effi-

ciency, speeding project completion and improving outcomes. Large-scale scientific efforts

rely on coordination among researchers to align methods, share data, and achieve break-

throughs. In healthcare, coordinated efforts among professionals enhance patient care,

reducing errors and improving outcomes. Environmental resource management also de-

pends on stakeholder coordination to sustainably manage resources and tackle challenges

like climate change and biodiversity loss. Understanding how and when people develop

these coordination abilities is therefore critical to fostering effective collaborations.

Experimental economics research indicates that mutually advantageous coordination

is difficult to achieve in single-play games (Dal Bó et al., 2021), yet tends to emerge

when two actors engage repeatedly (McKelvey and Palfrey, 2001). However, in many

real-world situations, people lack the opportunity to build expertise through repeated

interactions. More critically, these interactions are often complex, as individuals typically

operate within large social networks where they directly interact with only a subset of

nearby peers (Jackson, 2008; Goyal, 2012; Jackson et al., 2022). This networked structure

adds layers of complexity to coordination, as individuals must navigate indirect influences

and local information rather than relying on global knowledge or repetitive encounters.

In parallel, research in computer science has demonstrated that individuals in com-

plex networks can still achieve coordination when allowed some form of communication

before finalizing their choices. The work by Kearns and colleagues (Kearns et al. (2006);

Judd et al. (2010); Kearns (2012), etc. collectively referred to as [K]) shows that indi-

viduals with local information can effectively solve global problems, such as graph color-

ing and consensus-building, through an iterative “choose-observe-adjust” process. This

tâtonnement-like approach resembles indirect communication: players choose a color, ob-

serve their neighbors’ choices, and adjust their own choice accordingly. This method

enables local interactions to support global coordination, highlighting the potential of

structured observation and adaptation in complex social networks.

In this paper, we investigate the fundamental attributes that facilitate consensus-

building in group decision-making. Specifically, we study a streamlined version of [K]’s

consensus problem within a population of very young children aged 5 to 8. Our experiment

involves a six-person complete graph network, where each participant observes the choices

of either two or three neighbors and has 30 seconds to achieve unanimous agreement on a

single color. While the task is straightforward for adults, it poses a significant challenge

for young children whose cognitive abilities, such as impulse control and attention, are still

maturing. Our experiment has two advantages. First, the simplicity of the experimental

setup provides a clear framework to identify the fundamental factors that promote consen-
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sus, which we hope can be extrapolated to more complex and socially relevant scenarios.

Second, studying this age group helps assess whether the ability to coordinate actions is

innate or develops very early in life. By pinpointing developmental milestones in group

decision-making, we aim to better understand how children navigate and adapt to complex

social dynamics.

As a preview, the experiment yields two major findings. First, there is a marked

discontinuity in coordination success between kindergarteners (ages 5-6) and first or second

graders (ages 6-8): kindergarteners converge only 36% to 72% of the time, while their

one- or two-years older peers almost always reach convergence, at rates of 81% to 100%.

This suggests that while coordination ability is not entirely innate, it develops very early,

with a noticeable shift around age 6. Second, simple imitation of neighbors’ choices is

insufficient for solving the task. Instead, the near-perfect convergence observed in first

and second graders relies on two nuanced aspects of their decision-making process: (small)

choice frictions and (large) role heterogeneity. Small choice frictions refer to the value of

imitating the actions of the majority of the neighbors with high probability, but not with

absolute certainty. Large role heterogeneity highlights the benefits of some players acting

quickly to suggest an action and set a direction, others waiting for the debate to take

shape, and a third group acting only to lock the consensus. To support our analysis, we

develop several algorithms of increasing sophistication and compare simulated behavior

to children’s actual decisions. Although the algorithms effectively capture the general

patterns in children’s choices, they fall short of matching the performance of the oldest

students. This underscores the advantages of children’s flexibility and responsiveness to

social cues, even at an early age. We conjecture that adopting flexible decision rules and

heterogenous roles are also key features that facilitate coordination in more complex social

activities.

1 Results

1.1 Research design

We conducted the experiment with 150 students from LILA, a K-12 private school in Los

Angeles, comprising 54 kindergartners (33f, 21m, aged 5-6), 48 first graders (26f, 22m,

aged 6-7) and 48 second graders (24f, 24m, aged 7-8). We refer to these groups as K, 1

and 2. In the experiment, groups of six children from the same grade participated in the

“consensus task” described in Figure 1, where they chose between either 2 or 4 colors (C2

or C4) while observing the decisions of either 2 or 3 neighbors (N2 or N3). We employed

a 2 × 2 within-subject design. Participants played 4 rounds in each condition (C2N2,

C2N3, C4N2, C4N3) in counterbalanced blocks of two rounds with the same five partners,
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totalling 16 rounds. We anticipated consensus building to be more difficult with more

color choices and fewer peers to observe.

Each round began with a 30 second countdown, during which participants started

without an initial color. Within this timeframe, they could select and change their color

choice as often as desired. A round was a “success” if all players converged on the same

color within the 30 seconds, and it was a “failure” if the timer expired without convergence.

At the end of each round, participants received feedback on the outcome (success or failure)

and the distribution of participants across each color choice.

(a) (b) (c) (d)

Figure 1: Consensus Task. Panels (a) and (c) show the full network structure–visible only to the
experimenter–for C2N2 and C4N3, respectively. Each node corresponds to a player’s current color choice,
with lines representing the direct connections (observed neighbors) and the number next to the node
capturing the player’s ID. Panels (b) and (d) show screenshots of the graphical user interface from the
perspective of player ID #2. The player is marked as “you” in the center, with neighbors arranged
equidistantly to prevent framing effects. Players can change their color choice simply by tapping on an
option under “your action”, with a minimum interval of one second between changes. As soon as all players
end up on the same color, the timer stops, marking the round as a success.

Participants were incentivized with points, which they could exchange for toys of their

choice in our toy shop at the end of the session. They were explicitly instructed that

earning more points meant receiving more toys. Each session lasted around 30 minutes,

with all participants earning between 4 and 8 toys. The full set of instructions, read aloud

to participants, are available in SI1.

1.2 Network outcomes

The primary question is to assess the network’s performance. Given the uncertain level

of difficulty in reaching consensus, we introduce a comparison benchmark using a simple

wisdom of the crowd algorithm, referred to as AL: “Each player initially chooses a color at

random. Next, a player is randomly selected and adopts the color of the majority within

their neighborhood, counting their own choice when the number of neighbors is even (N2)

and excluding it when the number of neighbors is odd (N3). Afterward, another player is
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randomly chosen from the remaining five and follows the same rule. This process continues

for a maximum of 30 moves after the initial selection” (we used a different algorithm in

N2 and N3 only to prevent ties). While we could consider many other algorithms, this

one serves as a simple yet reasonable reference benchmark.

Likelihood of convergence

In Figure 2, we begin by calculating the probability of convergence within the allotted

30 seconds and comparing it to our algorithm’s performance.
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Figure 2: Percentage of network convergence for grades K, 1 and 2, and comparison with 10,000
simulations of our behavioral algorithm, AL, computed separately for each condition (C2N2, C4N2, C2N3,
C4N3). Error bars represent confidence intervals.

The results demonstrate a very significant age-related improvement within our window

of observation. First and second graders exhibit an impressive ability to reach consensus

across all conditions, with network success rates ranging from 26 to 32 out of 32. There are

no statistically significant differences between 1 and 2 (pairwise two-sided test of compari-

son of proportion with Holm adjustment, all p-values > 0.30). By contrast, kindergartners

face greater difficulty, with consensus achieved in only 13 to 26 out of 36 rounds, with all

proportions significantly different from the older grades (pairwise two-sided test of com-

parison of proportion with Holm adjustment, all p-values < 0.05) except for K v. 1 in

C2N3 (p=0.159). The algorithm performs (surprisingly) poorly with two neighbors (even

below K’s performance) but excels with three neighbors, underscoring the role of increased

connections in facilitating consensus. More generally, K’s behavior is consistent with the

hypothesis that consensus is hardest with more colors and fewer neighbors (C4N2). These

findings are further supported by a Probit regression analysis of network convergence

probability (see SI2 for details).

Speed of convergence
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Next, we examine the speed of convergence as an additional performance metric. When

examining the empirical number of choices needed to reach consensus (conditional on suc-

cessful convergence), there are no statistically significant differences across grades, except

between 2 v. K and 2 v. 1 in condition C4N2 (pairwise two-sided t-test for mean compar-

ison using pooled standard deviation and Holm adjustment, p-value = 0.003 and p-value

= 0.009, respectively). To enhance statistical power, Figure 3 presents the distribution

of choices until consensus, pooled across all grades but separated by condition. This

distribution is also compared to the algorithm’s performance AL.

C2N2 C4N2 C2N3 C4N3

6 9 12 15 18 21 24 27 30 33 36 6 9 12 15 18 21 24 27 30 33 36 6 9 12 15 18 21 24 27 30 33 36 6 9 12 15 18 21 24 27 30 33 36

0.0

0.1

0.2

0.3

0.4

Number Choices

F
re

qu
en

cy

AL
Data

Figure 3: Distribution of the total number of choices in the network, conditional on successful conver-
gence, for our combined population (all grades grouped) and for the algorithm, calculated separately for
each condition (C2N2, C4N2, C2N3, C4N3) [vertical lines indicate the average values in the graph].

Participants reach consensus significantly faster than the algorithm predicts (Kolmogorov-

Smirnov test, p-values < 0.001 for all four conditions). Indeed, 72% to 84% of participants

converge within 10 choices, compared to only 9% to 49% in the algorithm. Convergence

is rare after 30 choices (or even earlier) validating the experimental time limit and the

theoretical choice cap in the algorithm.

Overall, AL accurately captures the likelihood of convergence for K in N2 and for 1

and 2 in N3, though it fails to capture the speed of convergence in any condition.

1.3 Individual behavior

Next, we analyze individual behavior to gain insight into the strategies employed by our

participants. Our methodology is as follows: first, we identify the empirical features of

participants’ choices, and then we incorporate these features into AL to determine if the

modified algorithm better aligns with the observed behaviors.

Dynamic imitation

For each participant, we calculate how frequently they follow the strategy prescribed
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by the algorithm. Specifically, we observe the network from the perspective of individual

i at a given moment and check if their choice aligns with AL. We then examine the

network after one neighbor has changed their action, repeating this analysis iteratively

until no further changes occur. From this, we compute pi, the fraction of i’s choices

consistent with the algorithm and designate 1− pi as the level of non-compliance with the

algorithm, “degree of flexibility”, or “choice frictions”. This procedure is repeated for all

participants, in all configurations where at least one neighbor has already made a choice.

Figure 4 presents a histogram of the empirical distribution of pi across K, 1 and 2.
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Figure 4: Empirical fraction of pi, representing the choices consistent with AL, presented by grade.

The average empirical fraction of choices consistent with AL by grade is p̂K = 0.73,

p̂1 = 0.77 and p̂2 = 0.77, yielding a population average of p̂ = 0.75. Friction disparities

are higher in K, supporting the idea that confusion or inattention (pi < 0.50)—though

rare—occurs primarily among the youngest participants. This, in turn, might explain their

lower success rate in reaching consensus. In general, choice frictions are low (pi ∈ [0.7, 0.9]

for two-thirds of participants), but no frictions are uncommon.

To assess whether frictions are, in theory, beneficial or detrimental to performance, we

extend our algorithm to incorporate the possibility of deviations. Figure 5 displays the

convergence of AL as we vary p (∈ [1/2, 1]), which we call ALp (where, naturally, AL1 ≡
AL). In this extended algorithm, each individual follows the majority with probability

p (∈ [1/2, 1]) and deviates with probability 1− p. Deviations involve either keeping their

current choice when the strategy requires switching or randomly changing to one of the

minority colors when the strategy requires maintaining their choice.

From a theoretical perspective, some departures from full compliance with AL are

highly beneficial in N2. They can be either beneficial or detrimental in N3. The reason

is simple: while deviations generally delay convergence, they also prevent scenarios where

two subgroups lock into different colors with no incentives to switch—a configuration

much more common in N2. In such cases, deviations help overcome impasses, facilitating

consensus that might otherwise be unreachable.
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p̂ = 0.754 p* = 0.86
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Figure 5: ALp: convergence of the algorithm by condition as a function of choice frictions (we run
3,000 simulations for p ∈ [0.5, 1] in 0.02 intervals). We also report the empirical average (p̂) and the optimal
average level of choice frictions (p∗).

The level of frictions that maximizes convergence across all conditions is p∗ = 0.86,

lower but close to the observed empirical level (p̂ = 0.75). Notably, convergence under the

empirical friction level (p̂) surpasses convergence under no frictions (p = 1) when averaged

across all conditions. It suggests that some flexibility in choice can enhance performance.

At the same time, choice frictions notably decrease the speed of convergence (see SI3 for

details).

Initial choice

Another feature of our basic algorithm is that all six participants make their initial

choice randomly. However, several indicators suggest this assumption does not hold em-

pirically. Firstly, the probability of achieving convergence in exactly six moves (one per

participant) is 30% in C2 and 19% in C4—much higher than the expected 3.1% and 0.03%

if initial choices were entirely random (two-sided tests of comparison of proportions with

theoretical proportions, both p-values < 0.001). Additionally, conditional on achieving

convergence, the likelihood that the first color selected by the first player to choose aligns

with the final consensus color is 73% in C2 and 67% in C4, compared to 50% and 25%

respectively if initial choices were random (two-sided tests of comparison of proportions

with theoretical proportions, both p-values < 0.001). Finally, for rounds converging in

more than six moves, there is a 43% likelihood in C2 and 37% in C4 that consensus is

reached immediately after the first move of one of the players. The first two observations

suggest that neighbor imitation occurs even within the first choices of the players (hence,

not random). The third observation suggests a “sniping” behavior, where one participant,

the closer, delays their choice, waiting for the opportune moment to make the decisive,

consensus-reaching final move.
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To evaluate the degree of sequentiality in participants’ initial choices, we construct a

ranking measure. For each participant, we determine the ranking of their initial choice

within their network in each round (first to sixth) and calculate the average ranking of

the participant across all 16 rounds. Figure 6 shows the empirical distribution of these

average rankings across K, 1 and 2.
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Figure 6: Distribution of average rankings in the population (blue histogram), presented by grade. For
comparison, we include the two polar cases, where the 16 rankings are random across rounds (solid green
line) and perfectly correlated across rounds (dashed red line).

The distribution of initial choice rankings reveals large heterogeneity across individuals

(blue histogram). Some participants, the leaders, consistently make their initial decisions

quickly, aiming to guide the group. Others, the debaters, observe the initial behavior and

react accordingly. Finally, there is a group of closers, who systematically wait, observe

their peers, and aim to make the final, consensus reaching move. This pattern aligns more

closely with a perfectly correlated ranking across rounds (dashed red line) than with a

random ranking across rounds (solid green line). The dispersion is also higher in older

children. Overall, ALp̂’s assumption of random initial choice does not accurately capture

the behavior of our participants.

To evaluate the level of endogenous role heterogeneity in our population, we estimate

the average degree of sequentiality in participants’ initial choices. It involves creating a

weighted combination of simulated densities with no rank correlation (participants make

their initial choice simultaneously, q = 1) and perfect rank correlation (participants make

their initial choice sequentially, q = 0). Using maximum likelihood estimation techniques,

we find that the mix that best matches the data’s histogram in each grade (represented

by a thick black solid line in Figure 6) are q̂K = 0.24, q̂1 = 0.17 and q̂2 = 0.03, for a

population average of q̂ = 0.19. The result also points to a higher degree of sequentiality

in 2 than in 1 or K.

Are these endogenously heterogeneous roles, which we empirically found to be adopted
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by our participants in their initial decisions, associated with improved performance? To

explore this, we further extend our algorithm by assuming that each player’s initial choice is

simultaneous with the preceding player with probability q and sequential with probability

1− q. Here, q = 1 represents minimal role heterogeneity, while q = 0 represents maximal

role heterogeneity.1

Figure 7 depicts ALp̂,q, the theoretical likelihood convergence as we vary role hetero-

geneity q (∈ [0, 1]) and given the empirically observed level of choice frictions p̂ (naturally,

ALp̂,1 ≡ ALp̂).

q̂ = 0.1866

q* = 0
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Figure 7: ALp̂,q: convergence of algorithm given p̂ choice frictions as a function of q. We also report
the empirical average (q̂) and the optimal average role heterogeneity (q∗).

Convergence is monotonically decreasing in q. Sequentiality in initial choices signif-

icantly enhances imitation and, consequently, convergence, as it allows participants to

follow the initial choices of others. Given the absence of a pre-specified order of moves,

this requires a high level of coordination regarding who acts and who waits. The effect

is roughly linear and slightly more pronounced in N2, where achieving consensus is in-

herently more challenging. Furthermore, sequentiality impacts the distribution of choices

until convergence even more than the likelihood of convergence itself. Indeed, the updated

algorithm ALp̂,q̂ aligns much more closely with the observed speed of convergence among

participants than the initial AL (see SI3 for details).

To summarize our findings, Table 1 compares the likelihood of convergence across our

three participant groups and the three algorithmic models.

1Specifically, one player is randomly chosen to make the first initial action, which they select randomly.
A second player is then chosen at random. If this second player is not a neighbor of the first, they make
a random choice. However, if the first player is a neighbor, then with probability q, the second player’s
choice is “simultaneous” (i.e., made without observing the first player’s action, thus remaining random).
With probability 1− q, the choice is “sequential” (i.e., made after observing the first player’s action) and
follows the prescriptions of AL. This process repeats until all six players have made their initial choice, at
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empirical algorithm ∗

K 1 2 AL ALp̂ ALp̂,q̂

% convergence
C2N2 0.61 0.88 0.97 0.48 0.67 0.77
C4N2 0.36 0.88 0.81 0.21 0.50 0.64
C2N3 0.72 0.91 1.00 1.00 0.89 0.95
C4N3 0.72 1.00 0.94 0.92 0.82 0.92
∗ p̂ = 0.75 and q̂ = 0.19

Table 1: Summary comparison of performance between participants and algorithms

The algorithm incorporating small choice frictions and large role heterogeneity, ALp̂,q̂,

underestimates convergence in N2 but otherwise captures reasonably well the probability

of consensus-building in grades 1 and 2.

We also perform an OLS regression and show that individuals who move earlier (the

leaders, with ranks closest to 1 in Figure 6) are more likely to follow the prescriptions of the

algorithm in their subsequent moves. Conversely, impulsive participants (who repeatedly

click on the same action even though it has no practical effect in the game) are less likely

to adhere to it (see SI4 for details).

Finally, we explore the prevalence and underlying factors of sniping behavior, the

closers, and show that younger players are less likely to converge in C4 but more likely

to do so through sniping (see SI5 for details). Then, we show that convergence increases

when the first player to move does so faster, and when the individuals in the network

are more efficient at (endogenously) adopting different roles, leader v. closer (see SI6 for

details).

2 Discussion

This experiment uncovers a sharp developmental progression in children’s ability to co-

ordinate actions in groups. Kindergarteners (ages 5-6) show lower consensus-building

proficiency compared to first and second graders (ages 6-8), indicating that cognitive

mechanisms crucial to coordination—such as impulse control, sustained attention, and

processing social information—sharpen notably between these ages. This likely stems

from improvements in executive functions, working memory, and abstract thinking (Di-

amond, 2013). The task also demonstrate a fine sensitivity to developmental nuances

within this narrow age range, as our previous research in strategic behavior among young

children has shown (Brocas and Carrillo, 2020, 2021).

which point the algorithm proceeds as before.
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An interesting empirical aspect is the endogenous role heterogeneity—variability in

speed of the initial decision. Groups with both fast and slow decision-makers reach con-

sensus more effectively, with quick responses providing direction and slower responses

locking consensus. This balance of speeds may enhance decision-making in real-world

group scenarios, where the presence of leaders and closers allows adaptation to changing

information. Role heterogeneity aligns with evolutionary theory, which holds that diversity

in traits, like decision-making speed, can benefit group survival by fostering adaptability

(Simons, 2011). In social contexts, variation prevents premature convergence on subop-

timal choices and supports resilience. This diversity reflects the idea from evolutionary

game theory that variation in behavior benefits groups in cooperative settings (McNamara

et al., 2004).

The study also shows that pure imitation does not guarantee coordination success.

Children who adjust choices based on social cues, which we label as choice frictions,

coordinate better and faster, indicating that they use more complex mechanisms than

previously assumed. This aligns with theories of social cognition, which argue that children

are not passive imitators but active participants in social learning (Tomasello, 2009).

They employ adaptive strategies based on peers’ behaviors, reflecting early-developed

skills like shared intentionality and theory of mind (Wellman et al., 2001), and problem-

solving skills that are fine-tuned in social contexts (Gopnik and Wellman, 2012). These

traits are also likely to be beneficial in complex workplace environments, where a few

divergent perspectives can foster collaboration and help prevent scenarios where clusters

of individuals coordinate on conflicting strategies.

Network complexity, in the form of fewer neighbors or more options, makes consensus

significantly more challenging. This finding aligns with research suggesting that net-

work structure and visibility critically influence collective decision-making. For instance,

Kearns et al. (2006) demonstrates that consensus is challenging in networks with limited

connectivity, and that increasing visibility of others’ choices or reducing options can sim-

plify coordination by clarifying social cues. At the same time, our participants exhibit

an impressive collective ability to reduce complexity, even when full coordination is not

achieved. In fact, when we consider networks with four choices where consensus is not

reached, participants manage to eliminate two choices in 83% of cases. Also, five out of

six participants successfully coordinate at some stage in 35% of cases. Non-convergence is

often due to a single stubborn player who blocks progress towards a complete alignment.

Simple behavioral algorithms predict children’s choices in broad strokes but miss criti-

cal nuances, particularly regarding decision speed and friction, underscoring the flexibility

of children’s heuristic strategies shaped by social cues. This aligns with theories of heuris-

tic decision-making, where children make good enough choices suited to their cognitive
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limits and environmental constraints (Simon, 1955; Todd and Gigerenzer, 2000; Kahne-

man, 2011). Ecological rationality further asserts that these strategies are adapted to

specific contexts, allowing humans, including young children, to outperform rigid models

in real-life settings by relying on simple, context-sensitive strategies (Gopnik, 2012).

More broadly, our findings suggest that integrating structured group tasks that pro-

mote coordination and peer adaptation into early education may enhance the cooperative

skills, social cognition, and iterative problem-solving ability of children, competencies that

are highly useful in their future adult lives. Practical applications include designing collab-

orative team-building activities, early interventions for impulsive children, and educational

tools that align with developmental stages in social cognition. Future research could build

on these findings by exploring diverse socio-economic groups and cultural differences or

incorporating more complex tasks, such as fairness and resource allocation, to deepen our

understanding of developmental coordination skills.

It is important to consider the limitations of our study. First, participants are drawn

from a single private school in Los Angeles, which may have limited socio-economic and

cultural diversity, potentially affecting decision-making styles and coordination abilities.

Additionally, experimental tasks such as color-matching in small networks, do not fully

reflect the complexities of real-world coordination scenarios or the challenges of decision-

making in more intricate social networks. Also, while the study successfully identifies

key characteristics that promote consensus-building, it does not explore the other side of

the coin, namely the features that prevent consensus. Designing experiments that cre-

ate more room for miscoordination would help filling this gap. Finally, the controlled

laboratory setting, while beneficial for isolating specific variables, may not entirely repli-

cate the dynamics of more natural, ecological environments, where external pressures and

unobservable factors often play a significant role in coordination.

3 Methods

The study was conducted with approval from the University of Southern California Institu-

tional Review Board (IRB) under protocol UP-12-00528. Consent forms were distributed

to parents via the school administration, offering an opt-out option. An information session

was organized by the school for parents to ask questions to researchers a few weeks before

the experiment. On the day of the experiment, children were read an assent form and

asked if they wished to participate. No student or parent declined participation. Partici-

pant data were anonymized to maintain confidentiality and stored securely in accordance

with our approved protocol.

We conducted 10 sessions at LILA with 12 or 18 participants each (2 or 3 networks).
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We brought a portable lab to each classroom, gave PC tablets to every student, and

connected the tablets to each other and to the portable server in a closed circuit with a

wireless router. The experiment was programmed in oTree (Chen et al., 2016). Since we

needed groups of six players, we sometimes mixed students from two different classes but

always from the same grade. When multiples of six were not possible, the extra student(s)

were randomly occupied on a different task. We used cardboard separations to preserve

anonymity and made sure that students seated next to each other always belonged to

different networks.

The timing of the experiment was as follows. First, in order to elicit their interest,

we showed a sample of the toys the students would be playing for. These include 20 to

25 pre-screened, currently fashionable small toys such as bouncy balls, pop-up bracelets,

scented pens, slime, emoji keychains, etc. We then read the instructions aloud with the

support of a powerpoint presentation (as described in SI1). After, students played one

practice round, where they could raise their hand and privately ask clarification questions.

We then conducted the 16 rounds of the “network” task with 2 and 4 colors (C2 and C4)

and with 2 and 3 neighbors (N2 and N3), in the following counterbalanced blocks of two:

C2N3 C2N3 C2N2 C2N2 C4N3 C4N3 C4N2 C4N2 C2N2 C2N2 C2N3 C2N3 C4N2 C4N2

C4N3 C4N3, with a brief stretching pause halfway through the experiment. Finally, they

learned the number of toys they had won. We accompanied them to another classroom

where we had setup the “toy shop” and they selected their favorite items.

For payments, participants obtained 2 points for each network convergence and 1

point for non-convergence. The conversion rate was one toy for each 10 points, rounded

to the next ten (for example, 12 points = 2 toys). The procedure entailed incentives for

performance but, at the same time, relatively small variance, which ensured that every

participant was happy with their rewards. Among our participants, 84% obtained between

6 and 8 toys.

Finally, we employed 16 different colors so that no four consecutive rounds were played

with the same colors. This ensured that choices were unlikely to be driven by a “favorite”

color. More importantly, it also prevented the possibility that participants who converged

in a round decided all to start the next round on the same color.

Data availability statement: The datasets generated and analyzed in this study are

available at https://github.com/labelinstitute/Networks-consensus.

Code availability statement: The custom code used for simulating our algorithms is

available at https://github.com/labelinstitute/Networks-consensus.
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Supplementary Information

SI1. Instructions

Hi everyone. My name is Juan. Today, we are going to play several games and you are going
to win points. At the end, you are going to exchange the points for toys in our toy shop. You will
all get many toys, but the better you do, the more points you earn, and the more points you earn
the more toys you get.

NETWORK GAME

The computer is going to form several groups of six, but you will not know who is in your
group and it is not the point to find out [SLIDE 2].

Each of you will be connected to some people in your group but not to others. When you are
connected to someone, it means that you can see their choices. For example, here Bob sees the
choices of John and James but not the other kids in his group. John sees the choices of Bob and
Ann but not James or the others, and so on [SLIDES 3 and 4].

In some games, each of you will see the choices of two other people in your group. In some
other games, you will see the choices of 3 other people [SLIDES 5 and 6]. This is an example of
what the people in a group will see [SLIDE 7].

What you have to do in this game is very simple! You have to choose a color. That’s it. If
you all choose the same color at the same time, you all win two points! Otherwise, you will only
win one point. So, it’s not about choosing your favorite color but about choosing the same color
as others. The good news is that you can change the color as many times as you want. There is
only one rule: you cannot talk.

Let me give you an example. This is what you will see in your screen [SLIDE 8]. This is you
(point), and these are the people around you (point). You are always at the center of your own
group. In this case how many other people can you see? Two. Very good. Remember there are
other people in your group. It’s just that you can’t see them. This is the screen when there are
three other people in your group [SLIDE 9].

Let’s go back to the case where you see two people. Now, this is where you choose a color
[SLIDE 10]. In this case, everyone chooses between two colors, BLUE and RED, but in different
rounds you will see different colors. As soon as you choose a color, it will appear here. And the
people connected to you will be able to see it.

In this example, you chose red [SLIDE 11]. Here you see that one person chose blue and the
other red [SLIDE 12]. Then, you can change your color as many times as you want. It is totally
up to you. Remember the goal is to have everyone in your group of six choose the same color.
This means not only the people you can see but also the others you do not see.

So, for example, imagine you are Bob. In this case, [SLIDE 13] everyone you see is choosing
blue (including yourself), but you are still not winning two points because these guys are choosing
red. While here [SLIDE 14], everyone in your group is choosing blue, so you all get two points.
Does that make sense to everyone?

Now two more things. Every time you play, you will see a clock at the top of the screen
[SLIDE 15]. This tells you the amount of time left to play. You start with 30 seconds and the
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clock runs backwards (29, 28, 27). Everyone can change their action as many times as they want.
When everyone is in the same color, the clock stops, and you get two points. As long as everyone
is not in the same color, the clock keeps running. If it hits 0 and not everyone is in the same color,
you will only get one point.

You are going to play many rounds. Sometimes, you will see the choices of two people and
sometimes you will see the choices of three people. Also, sometimes you will choose between two
colors as in this example, and sometimes you will choose between four colors as in this example
[SLIDE 16]. However, the rules are always the same: everyone has to be in the same color, it
does not matter which one.

At the end of each round, you will know how many people chose each color. You will see a
screen like this [SLIDE 17]. In this example, did you get two points? Why? How about this one?
[SLIDE 18]. After you see if you won that round, you press the green button and move to the
next round to win more points. Are you ready to play?

You are going to play many times, so you are going to have many chances to win points. Before
we start, we are going to play a pretend round. This is only to make sure you understand the
game. This round does not count for real so feel free to try different things. If you don’t understand
what’s going on, raise your hand and we’ll be happy to come and help you. Any questions?

[After the practice round] We are going to start the real game
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Figure SI1: Slides projected on screen for instructions
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SI2. Probit regression of likelihood of network convergence

Table SI1 presents a Probit regression of network convergence probability with dummy variables
for grade, number of males in the network, number of links, number of colors, and first v. second
half of the experiment.

Prob. Conv.

(Intercept) 1.840∗∗∗

(0.455)
Grade K -1.190∗∗∗

(0.261)
Grade 2 0.129

(0.246)
# males -0.040

(0.126)
Second-Half 0.378◦

(0.203)
C4 -0.297∗

(0.148)
N2 -0.621∗∗∗

(0.150)

AIC 324.5
Num. obs. 400
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1

Table SI1: Probit regression of probability of network convergence (standard errors are clustered at
the session level). Convergence is significantly less frequent with more colors (C4), with fewer neighbors
(N2), and in K (compared to 1 and 2). Convergence is also marginally more frequent towards the end of
the experiment. Sex composition of the network has no effect.

SI3. Choices conditional on convergence under frictions

Figure SI2 compares the empirical distribution of number of choices conditional on convergence
with the distribution under 10,000 simulations of algorithms ALp̂ (left) and ALp̂,q̂ (right), that
is, the algorithm with frictions or with frictions and heterogenous roles.

Convergence is much slower under ALp̂ than under AL (see Figure 3) and therefore also much
slower than that of our participants. The introduction of choice frictions decreases the number of
instances where the network gets stuck in configurations where two subset of players coordinate in
two different colors. However, these small “mistakes” increase the expected number of choices it
takes to achieve consensus.

By contrast, sequentiality has a very large positive effect on speed of convergence. ALp̂,q̂

matches the empirical behavior of our participants much better than the other algorithms. How-
ever, it is still not perfect. Indeed, the fraction of both ‘immediate’ convergence (6 choices) and
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Figure SI2: Distribution of choices in the population and in the algorithms ALp̂ (left) and ALp̂,q̂

(right) [averages are reported with vertical lines].

‘delayed’ convergence (12 choices or more) is larger than in the data while the fraction of ‘inter-
mediate’ convergence (between 7 and 11 approximately) is smaller.

SI4. OLS regression of dynamic imitation

We investigate in Table SI2 the determinants of playing according to AL, pi, as a function of
the participant’s age (in months), sex, and average rank of their first choice (qi) which captures
their leadership skills and ability to move outcomes in their direction. We also include extra clicks,
which captures the impulsivity of the individual. Formally, it is the number of instances where
the participant clicks in the same color twice or more. Those decisions have no effect on outcomes
(they are not even observed by others) and only denote willingness to impose their choices.

pi

(Intercept) 0.914∗∗∗

(0.071)
Age -0.001

(0.001)
Male -0.014

(0.016)
Rank -0.0174∗

(0.007)
ExtraClicks -0.211∗∗∗

(0.017)

Adj. R2 0.539
Num. obs. 148
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1

Table SI2: OLS regression of pi.

Leaders (early movers) are more likely to follow the algorithm, thus showing a better under-
standing of the game. Conversely, impulsive participants are less likely to follow the algorithm, as
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they want to impose their choices on others. Interestingly, age has no effect on pi, mostly because
kindergartners—who are more likely to deviate from the algorithm—are also the more impulsive
players.

SI5. Sniping behavior

We have previously noted some differences across grades in the sequentiality of initial choices
(Figure 6). Nevertheless, conditional on convergence, the percentage of rounds where it is achieved
in exactly 6 moves is similar across grades: 29% in K, 29% in 1 and 26% in 2. Perhaps more
interestingly, the percentage of rounds where convergence is reached in more than 6 moves but
immediately after the first move of one participant–what we call sniping–is high and also similar
across grades: 30% in K, 28% in 1 and 27% in 2.

Table SI3 reports the proportion of sniped networks among networks that converged in more
than 6 moves, separated by grade and number colors to choose from.

C2 C4

K 0.37 0.52
1 0.43 0.38
2 0.48 0.27

Table SI3: Sniping by grade and complexity

Differences in sniping across grades is mostly related to the complexity of the situation. Indeed,
conditional on convergence, children in K show a higher tendency than children in 2 to snipe in
the more complex case with 4 colors (C4, two-sided test of comparison of proportions, p-value
= 0.053), even if they are less likely to reach overall convergence. This suggests that older children
are better able to think and dynamically adapt to complex situations.

Finally, Figure SI3 illustrates for each of the 25 networks in the experiment, the number of
rounds (out of 16) where convergence was achieved through sniping behavior. On average, sniping
occurred in 22.8% of rounds but we notice very different behavior across networks, with a minimum
of 0 and a maximum of 9 sniping in a given network.
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Figure SI3: Rounds of convergence through sniping behavior
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SI6. Timing of the first choice

For each round, we calculate a measure called “Delay” which represents the time elapsed
between the beginning of the game and the first move of the participant who moves first. We
then include this measure in the original Probit regression model of probability of convergence
(Table SI1), and present the results in Table SI4. As the regression shows, having one player in
the network who moves fast (lower value of “Delay” ) helps convergence.

Prob. Conv.

(Intercept) 2.790∗∗∗

(0.472)
Grade K -1.213∗∗∗

(0.206)
Grade 2 0.086

(0.242)
# males -0.060

(0.080)
Second-Half 0.314◦

(0.16673)
Delay -0.303∗∗

(0.106)
C4 -0.303◦

(0.164)
N2 -0.689∗∗∗

(0.17112)

AIC 318.0
Num. obs. 400
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1

Table SI4: Probit regression of probability of network convergence, including ‘Delay’ as
a predictor.

We also calculate the variance of the rank for each individual and then average these variances

to obtain a measure of “spread” for each network. The spread differs significantly between networks

in K and networks in 2 (two-sided t-test 1.77 v. 1.29, df = 14.744, t = 2.2327, p = 0.041; Cohen’s

d=1.07, Confidence Interval [−0.039, 2.17]) and it is marginally correlated with the probability of

convergence of the network (Pearson Correlation Coefficient PCC = -0.38, p = 0.063). This finding

suggests that better self-sorting of players within the network which results in less ambiguity in

roles (and thus, a smaller variance) enhances the likelihood of consensus, and is a skill that develops

over time.
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